已知等差數(shù)列{an}的前n項(xiàng)和為377,項(xiàng)數(shù)n為奇數(shù),且前n項(xiàng)和中奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和之比為7:6,求中間項(xiàng).
考點(diǎn):等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件推導(dǎo)出
S
S
=
n+1
n-1
=
7
6
,解得n=13,從而中間項(xiàng)是a7,由此能求出中間項(xiàng).
解答: 解:設(shè)奇數(shù)項(xiàng)的和為7x,則偶數(shù)項(xiàng)的和為6x,
∵等差數(shù)列{an}的前n項(xiàng)和為377,∴7x+6x=377,解得x=29,
∴S=29×7=203,S=29×6=174,
奇數(shù)共
1
2
(n+1)項(xiàng),偶數(shù)共
1
2
(n-1)項(xiàng),
Sn=
1
2
n(a1+an)=377,
S=
(n+1)(a1+an)
4
,S=
(n-1)(a2+an-1)
4
,
S
S
=
n+1
n-1
=
7
6
,解得n=13,
∴中間項(xiàng)是a7
Sn=S13=
13
2
×2a7
=377,
∴a7=
377
13
=29.
∴中間項(xiàng)為29.
點(diǎn)評(píng):本題考查等差數(shù)列的中間項(xiàng)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若圓x2+y2=16A(2,0),若P、Q是圓上兩點(diǎn),AP⊥AQ求PQ中點(diǎn)M的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線tx+y-2=0與圓心為C的圓(x-1)2+(y-t)2=8相交于A,B兩點(diǎn),且△ABC為等邊三角形,則實(shí)數(shù)t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1
(n∈N*),求通項(xiàng)an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知8sinα+5cosβ=6,sin(α+β)=
47
80
,則8cosα+5sinβ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我國(guó)政府對(duì)PM2.5采用如下標(biāo)準(zhǔn):
PM2.5日均值m(μg/m3) 空氣質(zhì)量等級(jí) 
m<35 一級(jí) 
35≤m≤75  二級(jí)
m>75 超標(biāo) 
某市環(huán)保局從180天的市區(qū)PM2.5監(jiān)測(cè)數(shù)據(jù)中,隨機(jī)抽取10天的數(shù)據(jù)作為樣本,檢測(cè)值如莖葉圖所示(十位為莖,個(gè)位為葉).
(1)求這10天數(shù)據(jù)的中位數(shù);
(2)從這10天的數(shù)據(jù)中任取3天的數(shù)據(jù),記ξ表示空氣質(zhì)量達(dá)到一級(jí)的天數(shù),求ξ的分布列;
(3)以這10天的PM2.5日均值來(lái)估計(jì)這180天的空氣質(zhì)量情況,其中大約有多少天的空氣質(zhì)量達(dá)到一級(jí)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正項(xiàng)等比數(shù)列{an}中,若log2(a1a9)=4,則a3a7等于( 。
A、16B、-16
C、10D、256

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)(x∈R)滿足f′(x)>f(x),則( 。
A、f(1)>ef(0)>e2f(-1)
B、f(1)<ef(0)<e2f(-1)
C、e2f(-1)>ef(0)>f(1)
D、e2f(-1)<ef(0)<f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)∈{x-1,log2|x|,x 
1
2
},且f(x)為偶函數(shù).
(1)確定函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=m•2f(x)+x2(m∈R).
①若函數(shù)g(x)在區(qū)間(-∞,-2)上是減函數(shù),求實(shí)數(shù)m的取值范圍;
②當(dāng)m>
1
4
時(shí),證明:g(x)>
1
4
x+
1
x
在x∈[1,2]上恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案