【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn),且的周長(zhǎng)為8.
(1)求橢圓的方程;
(2)若經(jīng)過(guò)原點(diǎn)的直線與橢圓相交于兩點(diǎn),且,試判斷是否為定值?若為定值,試求出該定值;否則,請(qǐng)說(shuō)明理由.
【答案】(1) 橢圓的方程為 (2)見(jiàn)解析.
【解析】試題分析:(1)由題意知, 的周長(zhǎng),求得的值,進(jìn)而得到的值,從而求得橢圓的方程;
(2)①當(dāng)直線在斜率不存在時(shí),把代入橢圓方程,即可求解的值;
②當(dāng)直線的斜率存在時(shí),設(shè)其方程為,聯(lián)立方程組,求得,利用弦長(zhǎng)公式,求解,再根據(jù)因?yàn)?/span>,所以直線的方程為,聯(lián)立方程組,進(jìn)而求得則,即可得到結(jié)論.
試題解析:
(1)由題意知, 的周長(zhǎng)為,所以,
又橢圓的離心率為,所以,
所以,故橢圓的方程為;
(2)①當(dāng)直線在斜率不存在時(shí),其方程為,代入橢圓方程得,
不妨設(shè),則,
因?yàn)?/span>,所以直線的方程為,代入橢圓方程得,
不妨設(shè),則,
所以;
②當(dāng)直線的斜率存在時(shí),設(shè)其方程為,
由消去得,
則,
,則,
因?yàn)?/span>,所以直線的方程為,設(shè),
由消去得,則,
則,
所以,綜上所述, 為定值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平面 平面, 與分別是棱長(zhǎng)為1與2的正三角形, // ,四邊形為直角梯形, // , ,點(diǎn)為的重心, 為中點(diǎn), .
(Ⅰ)當(dāng)時(shí),求證: //平面;
(Ⅱ)若直線與所成角為,試求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一塊矩形空地,要在這塊空地上開(kāi)辟一個(gè)內(nèi)接四邊形為綠地,使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知且設(shè),綠地面積為.
(1)寫(xiě)出關(guān)于的函數(shù)關(guān)系式,并指出這個(gè)函數(shù)的定義域.
(2)當(dāng)為何值時(shí),綠地面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別為A,B,C所對(duì)邊,a+b=4,(2﹣cosA)tan =sinA.
(1)求邊長(zhǎng)c的值;
(2)若E為AB的中點(diǎn),求線段EC的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】聯(lián)合國(guó)教科文組織規(guī)定,每年的4月23日是“世界讀書(shū)日”.某校研究生學(xué)習(xí)小組為了解本校學(xué)生的閱讀情況,隨機(jī)調(diào)查了本校400名學(xué)生在這一天的閱讀時(shí)間(單位:分鐘),將時(shí)間數(shù)據(jù)分成5組:,并整理得到如下頻率分布直方圖.
(1)求的值;
(2)試估計(jì)該學(xué)校所有學(xué)生在這一天的平均閱讀時(shí)間;
(3)若用分層抽樣的方法從這400名學(xué)生中抽取50人參加交流會(huì),則在閱讀時(shí)間為的兩組中分別抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,上頂點(diǎn)為,若直線的斜率為1,且與橢圓的另一個(gè)交點(diǎn)為, 的周長(zhǎng)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線(直線的斜率不為1)與橢圓交于兩點(diǎn),點(diǎn)在點(diǎn)的上方,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角梯形ABCD中,AD∥BC,∠A=90°,AB=2AD,若將△ABD沿直線BD折成△A′BD,使得A′D⊥BC,則直線A′B與平面BCD所成角的正弦值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的頂點(diǎn)是坐標(biāo)原點(diǎn),焦點(diǎn)在軸的正半軸上,過(guò)焦點(diǎn)且斜率為的直線與拋物線交于兩點(diǎn),且滿(mǎn)足.
(1)求拋物線的方程;
(2)已知為拋物線上一點(diǎn),若點(diǎn)位于軸下方且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《城市規(guī)劃管理意見(jiàn)》中提出“新建住宅原則上不再建設(shè)封閉住宅小區(qū),已建成的住宅小區(qū)和單位大院逐步打開(kāi)”,此消息在網(wǎng)上一石激起千層浪.各種說(shuō)法不一而足,為了了解居民對(duì)“開(kāi)放小區(qū)”認(rèn)同與否,從[25,55]歲人群中隨機(jī)抽取了n人進(jìn)行問(wèn)卷調(diào)查,得如下數(shù)據(jù):
組數(shù) | 分組 | 認(rèn)同人數(shù) | 認(rèn)同人數(shù)占 |
第一組 | [25,30) | 120 | 0.6 |
第二組 | [30,35) | 195 | p |
第三組 | [35,40) | 100 | 0.5 |
第四組 | [40,45) | a | 0.4 |
第五組 | [45,50) | 30 | 0.3 |
第六組 | [50,55) | 15 | 0.3 |
(1)完成所給頻率分布直方圖,并求n,a,p.
(2)若從[40,45),[45,50)兩個(gè)年齡段中的“認(rèn)同”人群中,按分層抽樣的方法抽9人參與座談會(huì),然后從這9人中選2名作為組長(zhǎng),組長(zhǎng)年齡在[40,45)內(nèi)的人數(shù)記為ξ,求隨機(jī)變量ξ的分布列和期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com