5.設(shè)f是從集合A={1,2}到集合B={0,1,2,3,4}的映射,則滿足f(1)+f(2)=4的所有映射的個數(shù)為5個.

分析 根據(jù)映射關(guān)系分別討論若f(1)和f(2)的取值情況即可.

解答 解:∵f是從集合A={1,2}到集合B={0,1,2,3,4}的映射,f(1)+f(2)=4
∴若f(1)=0,則f(2)=4,
若f(1)=1,則f(2)=3,
若f(1)=2,則f(2)=2,
若f(1)=3,則f(2)=1,
若f(1)=4,則f(2)=0,
共有5個,
故答案為:5

點評 本題主要考查映射個數(shù)的計算,根據(jù)映射的定義分別進行討論是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

15.雙曲線C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的離心率為$\frac{5}{4}$,焦點到漸近線的距離為3,則C的實軸長等于8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知雙曲線C:$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}$=1(b>0)的離心率為2,則C上任意一點到兩條漸近線的距離之積為(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列說法中正確的是( 。
A.“f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B.“若$α=\frac{π}{6}$,則$sinα=\frac{1}{2}$”的否命題是“若$α≠\frac{π}{6}$,則$sinα≠\frac{1}{2}$
C.若$p:?{x_0}∈R,x_0^2-{x_0}-1>0$,則¬p:?x∈R,x2-x-1<0
D.若p∧q為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.F為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的右焦點,點P在雙曲線右支上,△POF(O為坐標原點)滿足OF=OP=5,$P{F_{\;}}=2\sqrt{5}$,則雙曲線的離心率為 ( 。
A.$\sqrt{3}+1$B.$\sqrt{5}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知定義在R上的函數(shù)f(x)滿足f(x-1)=f(1-x),且x≥0時,f(x)=2|x-m|-2,f(-1)=-1,則f(x)<0的解集為( 。
A.(-∞,-2)∪(2,+∞)B.(-2,2)C.(0,2)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知雙曲線M:x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的左、右焦點分別為F1,F(xiàn)2,過點F1與雙曲線的一條漸近線平行的直線與另一條漸近線交于點P,若點P在以原點為圓心,雙曲線M的虛軸長為半徑的圓內(nèi),則b2的取值范圍是( 。
A.(7+4$\sqrt{3}$,+∞)B.(7-4$\sqrt{3}$,+∞)C.(7-4$\sqrt{3}$,7+4$\sqrt{3}$)D.(0,7-4$\sqrt{3}$)∪(7+4$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若實數(shù)x,y滿足條件:$\left\{{\begin{array}{l}{\sqrt{3}x-y≤0}\\{x-\sqrt{3}y+2≥0}\\{y≥0}\end{array}}\right.$,則$\sqrt{3}x+y$的最大值為( 。
A.0B.$\sqrt{3}$C.$2\sqrt{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知O為坐標原點,過雙曲線${x^2}-\frac{y^2}{a^2}=1$上的點P(1,0)作兩條漸近線的平行線,交兩漸近線分別于A,B兩點,若平行四邊形OBPA的面積為1,則雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

同步練習冊答案