4.根據(jù)氣象記錄,知道甲、乙兩地一年中雨天占的比例分別為20%和18%,兩地同時下雨的比例為12%,則甲地為雨天時乙地也為雨天的概率為( 。
A.0.12B.0.60C.0.67D.0.90

分析 直接用兩市同時下雨的天數(shù)比例除以乙市雨天的比例,求得乙市下雨時甲市也下雨的概率.

解答 解:設一年中甲市下雨記為事件A,乙市下雨記為事件B,則兩市同時下雨記為事件AB,
由題意可得,p(A)=20%,p(B)=18%,p(AB)=12%,
則甲市下雨時乙市也下雨的概率為$\frac{P(AB)}{P(A)}$=$\frac{12%}{20%}$=$\frac{3}{5}$,
故選:B.

點評 本題主要考查條件概率的計算問題,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$ )的圖象與x軸的一個交點為(-$\frac{π}{6}$,0),與此交點距離最短的最高點坐標是($\frac{π}{12}$,1).
(1)求函數(shù)f(x)的表達式.
(2)求方程f(x)=a (-1<a<0)在[0,2π]內的所有實數(shù)根之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若0<x≤$\frac{π}{3}$,則函數(shù)y=sinx+cosx+sinxcosx的值域為(1,$\frac{1}{2}+\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若sin(α-β)cosα-cos(α-β)sinα=m,且β為第二象限角,則cosβ的值為( 。
A.$\sqrt{1-{m^2}}$B.$\sqrt{{m^2}-1}$C.$-\sqrt{1-{m^2}}$D.$-\sqrt{{m^2}-1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設集合A={x∈Q|x>-1},則正確的是( 。
A.∅∈AB.{$\sqrt{2}$}⊆AC.$\sqrt{3}$∈AD.$\sqrt{2}$∉A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.畫出解方程組$\left\{\begin{array}{l}{2x-y=1}\\{4x+3y=7}\end{array}\right.$的一個算法的流程圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在菱形ABCD中,若AC=4,則$\overrightarrow{CA}$•$\overrightarrow{AB}$等于( 。
A.8B.-8
C.|${\overrightarrow{AB}}$|cosAD.與菱形的邊長有關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知雙曲線2x2-3y2-6=0,若它的一條弦AB被直線y=kx(k≠0)平分,則弦AB的斜率為$\frac{2}{3}$k.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知拋物線y2=4$\sqrt{3}$x的準線過橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>0,b>0)的一個焦點,橢圓的長軸長是短軸長的2倍,則該橢圓的方程為$\frac{x^2}{4}+{y^2}=1$.

查看答案和解析>>

同步練習冊答案