分析 (1)化簡(jiǎn)函數(shù)f(x),利用“五點(diǎn)法”列表、畫出f(x)在$[-\frac{π}{3},\frac{5π}{3}]$上的圖象即可;
(2)利用正弦定理,結(jié)合三角函數(shù)的恒等變換與角的取值范圍,即可求出三角形面積S的取值范圍.
解答 解:(1)∵函數(shù)f(x)=cos(x+$\frac{π}{6}$)+sinx
=cosxcos$\frac{π}{6}$-sinxsin$\frac{π}{6}$+sinx
=$\frac{\sqrt{3}}{2}$cosx+$\frac{1}{2}$sinx
=sin(x+$\frac{π}{3}$),
利用“五點(diǎn)法”列表如下,
x+$\frac{π}{3}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $-\frac{π}{3}$ | $\frac{π}{6}$ | $\frac{2π}{3}$ | $\frac{7π}{6}$ | $\frac{5π}{3}$ |
y | 0 | 1 | 0 | -1 | 0 |
點(diǎn)評(píng) 本題考查了利用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)圖象的應(yīng)用問題,也考查了三角恒等變換和正弦定理的應(yīng)用問題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{51}{60}$ | B. | $\frac{60}{51}$ | C. | $\frac{19}{20}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 18個(gè) | B. | 16個(gè) | C. | 14個(gè) | D. | 12個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4{C}_{13}^{2}}{{C}_{52}^{2}}$ | B. | $\frac{{C}_{13}^{2}}{{C}_{52}^{2}}$ | C. | $\frac{2}{52}$ | D. | $\frac{13}{52}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com