分析 根據(jù)正弦函數(shù)的圖象和性質(zhì)可得.
解答 解:函數(shù)y=sin(ωx-$\frac{π}{3}$)與y=$\frac{1}{2}$交點中距離最小為$\frac{π}{3}$,
∴sin(ωx-$\frac{π}{3}$)=$\frac{1}{2}$,
∴ωx1-$\frac{π}{3}$=2kπ+$\frac{π}{6}$,(1)
ωx2-$\frac{π}{3}$=2kπ+$\frac{5π}{6}$,(2)
(2)-(1)得:ω(x2-x1)=$\frac{2π}{3}$;
∵|x2-x1|=$\frac{π}{3}$,
∴ω•$\frac{π}{3}$=$\frac{2π}{3}$,
∴ω=2;
故答案為:2.
點評 本題考查三角函數(shù)的解析式的求法,注意三角函數(shù)的圖象與性質(zhì)的應(yīng)用是解題的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題,
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2} | B. | {(1,2)} | C. | {(2,1)} | D. | {(x,y)|x=1或y=2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向量$\overrightarrow{a}+\overrightarrow$與$\overrightarrow{a}-\overrightarrow$垂直 | B. | 向量$\overrightarrow{a}-\overrightarrow$與$\overrightarrow{a}$垂直 | ||
C. | 向量$\overrightarrow{a}+\overrightarrow$與$\overrightarrow{a}$垂直 | D. | 向量$\overrightarrow{a}+\overrightarrow$與$\overrightarrow{a}-\overrightarrow$平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 6 | C. | 9 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 14 | B. | 16 | C. | 18 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充分必要 | D. | 既不充分也不必要 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com