(本題13分)
已知函數(shù)
.
(1)當
時,求
的單調區(qū)間;
(2)若
在
單調增加,在
單調減少,證明:
<6.
解:(1)當
時,
,故
當
當
從而
單調減少.----(6分)
(2)
由條件得:
從而
因為
所以
將右邊展開,與左邊比較系數(shù)得,
故
又
由此可得
于是
--------------------(13分)
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)已知函數(shù)
.
(Ⅰ)當
時,求曲線
在
處的切線方程;
(Ⅱ)求函數(shù)
在區(qū)間
上的最小值;
(Ⅲ)若關于的方程
在區(qū)間
內有兩個不相等的實數(shù)根,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分16分)
已知函數(shù)
的導數(shù)是
.
(1)求
時,
在x=1處的切線方程。
(2)當
時,求證:對于任意的兩個不等的正數(shù)
,有
;
(3)對于任意的兩個不等的正數(shù)
,若
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
(I)若
,求函數(shù)
極值;
(II)設F(x)=
,若函數(shù)F(x)在[0,1]上單調遞增,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知函數(shù)
,
.依次在
處取到極值.
(Ⅰ)求
的取值范圍;
(Ⅱ)若
成等差數(shù)列,求
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
2014年青奧會水上運動項目將在J地舉行,截止2010年底,投資集團B在J地共投資100萬元
用于地產(chǎn)和水上運動項目的開發(fā)。經(jīng)調研,從2011年初到2014年底的四年間,B集團預期可從三個方面獲得利潤:一是房地產(chǎn)項目,四年獲得的利潤的值為該項目投資額(單位:百萬元)的20%;二是水上運動項目,四年獲得的利潤的值為該項目投資額(單位:百萬元)的算術平方根;三是旅游業(yè),四年可獲得利潤10百萬元。
(1)B集團的投資應如何分配,才能使這四年總的預期利潤最大?
(2)假設2012年起,J地政府每年都要向B集團征收資源占用費,2012年征收2百萬元后,以后每年征收的金額比上一年增加10%,若B集團投資成功的標準是:從2011年初到2014年底,這四年總的預期利潤中值(預期最大利潤與最小利潤的平均數(shù))不低于投資額的18%,問B集團投資是否成功?
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
函數(shù)
的單調遞減區(qū)間為 ▲ .
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
曲線
在點(1,-1)處的切線方程為 ( )
查看答案和解析>>