【題目】已知A,B為橢圓上的兩個動點,滿足.
(1)求證:原點O到直線AB的距離為定值;
(2)求的最大值;
(3)求過點O,且分別以OA,OB為直徑的兩圓的另一個交點P的軌跡方程.
【答案】(1)證明見解析;(2);(3).
【解析】
(1)當(dāng)直線AB的斜率不存在時,將代入橢圓方程可得,即可得原點O到直線AB的距離為;當(dāng)直線AB的斜率存在時,設(shè)直線AB的方程為,,,與橢圓方程聯(lián)立,可得,又,則,利用韋達(dá)定理代入化簡可得,則原點O到直線AB的距離,故原點O到直線AB的距離為定值;
(2)由(1)可得,又且,即可得的最大值;
(3)如圖所示,過點O,且分別以OA,OB為直徑的兩圓的另一個交點P的軌跡滿足:,,可得P,A,B三點共線. 由(1)可知:原點O到直線AB的距離為定值,即可得點的軌跡方程.
(1)證明:當(dāng)直線AB的斜率不存在時,由代入橢圓方程可得:,解得,此時原點O到直線AB的距離為.
當(dāng)直線AB的斜率存在時,設(shè)直線AB的方程為,,.
聯(lián)立,化為,
,則,,
.
,
化為,
化為,
化為,
原點O到直線AB的距離.
綜上可得:原點O到直線AB的距離為定值.
(2)解:由(1)可得,
,
,
又,
當(dāng)且僅當(dāng)時取等號.
的最大值為.
(3)解:如圖所示,過點O,且分別以OA,OB為直徑的兩圓的另一個交點P的軌跡滿足:,.
因此P,A,B三點共線.
由(1)可知:原點O到直線AB的距離為定值.
分別以OA,OB為直徑的兩圓的另一個交點P的軌跡方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ )的周期為π,且圖象上的一個最低點為M( ).
(1)求f(x)的解析式及單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,]時,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中a為常數(shù).
Ⅰ當(dāng),求a的值;
Ⅱ當(dāng)時,關(guān)于x的不等式恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有邊長分別3,4,5的三角形兩個,邊長分別4,5,的三角形四個,邊長分別為,4,5的三角形六個.用上述三角形為面,可以拼成______個四面體.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,求證:函數(shù)恰有一個負(fù)零點;(用圖象法證明不給分)
(2)若函數(shù)恰有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下關(guān)于線性方程組解的個數(shù)的命題.
①,②,③,④,
(1)方程組①可能有無窮多組解;
(2)方程組②可能有且只有兩組不同的解;
(3)方程組③可能有且只有唯一一組解;
(4)方程組④可能有且只有唯一一組解.
其中真命題的序號為________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).其中表示的導(dǎo)函數(shù)在的取值.
(1)求的值及函數(shù)的單調(diào)區(qū)間;
(2)若在的定義域內(nèi)恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求該函數(shù)的定義域;
(2)當(dāng)時,如果對任何都成立,求實數(shù)的取值范圍;
(3)若,將函數(shù)的圖像沿軸方向平移,得到一個偶函數(shù)的圖像,設(shè)函數(shù)的最大值為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列,滿足:對任意正整數(shù),都有,,成等差數(shù)列,,,成等比數(shù)列,且,.
(Ⅰ)求證:數(shù)列是等差數(shù)列;
(Ⅱ)求數(shù)列,的通項公式;
(Ⅲ)設(shè)=++…+,如果對任意的正整數(shù),不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com