【題目】袋中有五張卡片,其中紅色卡片三張,標(biāo)號(hào)分別為1,2,3;藍(lán)色卡片兩張,標(biāo)號(hào)分別為1,2.
(1)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號(hào)之和小于4的概率;
(2)現(xiàn)往袋中再放入一張標(biāo)號(hào)為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號(hào)之和不大于4的概率.
【答案】
(1)解:從五張卡片中任取兩張的所有可能情況有如下10種:紅1紅2,紅1紅3,紅1藍(lán)1,紅1藍(lán)2,紅2紅3,紅2藍(lán)1,紅2藍(lán)2,紅3藍(lán)1,紅3藍(lán)2,藍(lán)1藍(lán)2.
其中兩張卡片的顏色不同且標(biāo)號(hào)之和小于4的有3種情況:紅1藍(lán)1,紅1藍(lán)2,紅2藍(lán)1,
故所求的概率為 .
(2)解:加入一張標(biāo)號(hào)為0的綠色卡片后,從六張卡片中任取兩張,除上面的10種情況外,多出5種情況:紅1綠0,紅2綠0,紅3綠0,藍(lán)1綠0,藍(lán)2綠0,總共有15種情況,
其中顏色不同且標(biāo)號(hào)之和不大于4的有10種情況:紅1藍(lán)1,紅1藍(lán)2,紅2藍(lán)1,紅2藍(lán)2,
紅3藍(lán)1,紅1綠0,紅2綠0,紅3綠0,藍(lán)1綠0,藍(lán)2綠0,共計(jì)10種,
所以,要求的概率為 .
【解析】(1)從五張卡片中任取兩張的所有可能情況,用列舉法求得有10種情況,其中兩張卡片的顏色不同且標(biāo)號(hào)之和小于4的有3種情況,從而求得所求事件的概率.(2)所有的抽法共有 =15種,其中顏色不同且標(biāo)號(hào)之和不大于4的有10種情況,由此求得所求事件的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義2×2矩陣 =a1a4﹣a2a3 , 若f(x)= ,則f(x)的圖象向右平移 個(gè)單位得到函數(shù)g(x),則函數(shù)g(x)解析式為( )
A.g(x)=﹣2cos2x
B.g(x)=﹣2sin2x
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過(guò)的部分按平價(jià)收費(fèi),超過(guò)的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照, , , 分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為,求的分布列與數(shù)學(xué)期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)(噸),估計(jì)的值(精確到0.01),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某條公共汽車線路收支差額與乘客量的函數(shù)關(guān)系如圖所示(收支差額車票收入支出費(fèi)用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(Ⅰ)不改變車票價(jià)格,減少支出費(fèi)用;建議(Ⅱ)不改變支出費(fèi)用,提高車票價(jià)格,下面給出的四個(gè)圖形中,實(shí)線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則
A. ①反映了建議(Ⅱ),③反映了建議(Ⅰ)
B. ①反映了建議(Ⅰ),③反映了建議(Ⅱ)
C. ②反映了建議(Ⅰ),④反映了建議(Ⅱ)
D. ④反映了建議(Ⅰ),②反映了建議(Ⅱ)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的離心率為 , 其中左焦點(diǎn)F(﹣2,0).
(1)求橢圓C的方程;
(2)若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段的中點(diǎn)M在圓x2+y2=1上,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E:的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線交橢圓E于A、B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,﹣1),則E的方程為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將邊長(zhǎng)為2正方形ABCD沿對(duì)角線BD折成直二面角A﹣BD﹣C,有如下四個(gè)判斷:
①AC⊥BD
②AB與平面BCD所成60°角
③△ABC是等邊三角形
④若A、B、C、D四點(diǎn)在同一個(gè)球面上,則該球的表面積為8π
其中正確判斷的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l過(guò)點(diǎn)P(1,0,﹣1),平行于向量=(2,1,1),平面α過(guò)直線l與點(diǎn)M(1,2,3),則平面α的法向量不可能是( 。
A.(1,﹣4,2)
B.(,-1,)
C.(-,1,-)
D.(0,﹣1,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y2=4x,過(guò)點(diǎn)P(2,0)作斜率分別為k1 , k2的兩條直線,與拋物線相交于點(diǎn)A、B和C、D,且M、N分別是AB、CD的中點(diǎn)
(1)若k1+k2=0, ,求線段MN的長(zhǎng);
(2)若k1k2=﹣1,求△PMN面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com