9.已知函數(shù)f(x)=$\frac{x^2}{2lnkx}$(k≠0)的圖象在x=$\sqrt{e}$處的切線垂直于y軸.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)設(shè)函數(shù)g(x)=-$\frac{x^2}{2}+alnx+a\;({a>0})$,若對于?x1,x2∈(1,+∞),總有f(x1)≥g(x2)成立,求a的取值范圍.

分析 (Ⅰ)求出函數(shù)f(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的方程,求出函數(shù)的單調(diào)區(qū)間和極值即可;
(Ⅱ)求出函數(shù)f(x)的最小值,通過討論a的范圍,判斷g(x)的單調(diào)性,從而確定a的范圍即可.

解答 解:(Ⅰ)∵f(x)的定義域是(0,1)∪(1,+∞),
∴$f'(x)=\frac{{2xlnkx-{x^2}•\frac{1}{x}}}{{2{{ln}^2}kx}}=\frac{{x({2lnkx-1})}}{{2{{ln}^2}kx}}$.
由已知$f'({\sqrt{e}})=0$得k=1,
∴$f(x)=\frac{x^2}{2lnx}$
從而f'(x)、f(x)隨x的變化如下表

x(0,1)$({1\;,\;\sqrt{e}})$$\sqrt{e}$$({\sqrt{e}\;,\;+∞})$
f'(x)--0+
f(x)極小
∴f(x)的減區(qū)間是(0,1),$({1\;,\;\sqrt{e}})$;f(x)的增區(qū)間是$({\sqrt{e}\;,\;+∞})$;$f{(x)_{極小}}=f({\sqrt{e}})=e$,無極大值.
(Ⅱ)由題設(shè),只須g(x)在(1,+∞)上的最大值不大于f(x)的最小值即可.
由(Ⅰ)知,當(dāng)x>1時,$f(x)_{min}^{\;}=e$.
當(dāng)x≥1時,..,
(1)若a≤1,則g'(x)≤0,此時,g(x)在(1,+∞)上單調(diào)遞減,
∴$g(x)≤g(1)=-\frac{1}{2}+a<e$滿足題設(shè).
(2)若a>1,則g'(x)=0,得$x=\sqrt{a}$,
當(dāng)$1<x<\sqrt{a}$時,g'(x)>0;當(dāng)$x>\sqrt{a}$時,g'(x)<0,
∴$g{(x)_{max}}=g({\sqrt{a}})=-\frac{a}{2}+aln\sqrt{a}=\frac{1}{2}({a+alna})$,
故只須$\frac{1}{2}({a+alna})≤e$.
記$h(x)=\frac{1}{2}({x+xlnx})$(x>1),則$h'(x)=1+\frac{1}{2}lnx>0$,
∴h(x)在(1,+∞)上單調(diào)遞增,且$h(e)=\frac{1}{2}({e+elne})=e$,
從而,當(dāng)且僅當(dāng)a≤e時,有$\frac{1}{2}({a+alna})≤e$.
綜上,0<a≤e即為所求.

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某旅行社在暑假期間推出如下旅游團(tuán)組團(tuán)辦法:達(dá)到100人的團(tuán)體,每人收費(fèi)1000元.如果團(tuán)體的人數(shù)超過100人,那么每超過1人,每人平均收費(fèi)降低5元,但團(tuán)體人數(shù)不能超過180人,如何組團(tuán)可使旅行社的收費(fèi)最多?(不到100人不組團(tuán))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖所示,四面體P-ABC中,$∠APB=∠BPC=∠CPA=\frac{π}{2}$,PA=4,PB=2,$PC=\sqrt{5}$,則四面體P-ABC的外接球的表面積為25π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知直線l1:ax+3y-1=0,${l_2}:2x+({a^2}-a)y+3=0$,且l1⊥l2,則a=0或$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)集合A={x|-1≤x≤5},B={x|3<x<9},則A∪B=[-1,9).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.復(fù)數(shù)$z=\frac{10i}{3+i}$(i為虛數(shù)單位)的虛部為( 。
A.1B.3C.-3D.$\frac{15}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.△ABC中,角A,B,C的對邊分別為a,b,c,已知$\frac{{\sqrt{3}sinC}}{cosB}=\frac{c}$.
(Ⅰ)求角B的大小;
(Ⅱ)點D為邊AB上的一點,記∠BDC=θ,若$\frac{π}{2}$<θ<π,CD=2,$AD=\sqrt{5}$,a=$\frac{8\sqrt{5}}{5}$,求sinθ與b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.中石化集團(tuán)通過與安哥拉國家石油公司合作,獲得了安哥拉深海油田區(qū)塊的開采權(quán),集團(tuán)在某些區(qū)塊隨機(jī)初步勘探了部分口井,取得了地質(zhì)資料.進(jìn)入全面勘探時期后,集團(tuán)按網(wǎng)絡(luò)點來布置井位進(jìn)行全面勘探.由于勘探一口井的費(fèi)用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井.以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見如表:
井號I123456
坐標(biāo)(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
鉆探深度(km)2456810
出油量(L)407011090160205
(1)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計y的預(yù)報值;
(2)設(shè)出油量與勘探深度的比值k不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有的出油量不低于50L的井中任意勘察3口井,求恰有2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$過拋物線$y=\frac{1}{4}{x^2}$的焦點B,離心率為$\frac{{2\sqrt{2}}}{3}$,直線l交橢圓于P,Q(異于點B)兩點,且BP⊥BQ.
(1)求橢圓C的方程;
(2)求△BPQ面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案