下列函數(shù)中,既是奇函數(shù),又是定義域上單調(diào)遞減的函數(shù)為( 。
A、y=x-2
B、y=x-1
C、y=lg
1-x
1+x
D、y=x2
考點(diǎn):函數(shù)單調(diào)性的判斷與證明,函數(shù)奇偶性的判斷
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:運(yùn)用定義和常見函數(shù)的奇偶性和單調(diào)性的判斷,即可得到既是奇函數(shù),又是定義域上單調(diào)遞減的函數(shù).
解答: 解:對(duì)于A.有f(-x)=f(x),則為偶函數(shù),故A錯(cuò);
對(duì)于B.f(-x)=-f(x),則為奇函數(shù),在x>0和x<0上遞減,故B錯(cuò);
對(duì)于C.y=lg
1-x
1+x
=lg(
2
x+1
-1),定義域?yàn)椋?1,1),f(-x)+f(x)=lg
1-x
1+x
+lg
1+x
1-x
=lg1=0,
則為奇函數(shù),當(dāng)0<x<1時(shí),
2
x+1
遞減,則函數(shù)y遞減,故C對(duì);
對(duì)于D.函數(shù)為偶函數(shù),在x>0上遞增,在x<0上遞減,故D錯(cuò).
故選C.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性和單調(diào)性的判斷,注意運(yùn)用定義和常見函數(shù)的奇偶性和單調(diào)性的判斷,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin2x-4sin3xcosx(x∈R)的最小正周期為( 。
A、
π
2
B、π4
C、π8
D、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一塊弓形薄鐵片EAF,點(diǎn)M為
EF
的中點(diǎn),其所在圓O的半徑為4dm(圓心O在弓形EMF內(nèi)).∠EOF=
3
,將弓形薄鐵片截成盡可能大的矩形鐵片ABCD(不計(jì)損耗).AD∥EF且A、D在
EF
上,設(shè)∠AOD=2θ.
(1)求矩形鐵片ABCD的面積與關(guān)于θ的函數(shù)解析式;
(2)當(dāng)裁出的矩形鐵片ABCD的面積最大時(shí),求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①求函數(shù)f(x)=
4x-x2
的定義域與值域;
②計(jì)算lg4+2lg5+eln2+log 
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n是空間兩條直線,α,β是空間兩個(gè)平面,有下列四個(gè)命題:
①當(dāng)m?α?xí)r,“n∥α”是“m∥n”的必要不充分條件;
②當(dāng)m?α?xí)r,“m⊥β”是“α⊥β”的充分不必要條件;
③當(dāng)n⊥α?xí)r,“n⊥β”是“α∥β”成立的充要條件;
④當(dāng)m?α?xí)r,“n⊥α”是“m⊥n”的充分不必要條件;
以上四個(gè)命題正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sinx與函數(shù)y=cosx線性組合構(gòu)成的函數(shù)f(x)=msinx+ncosx(m,n是常數(shù))稱為“優(yōu)美函數(shù)”.
(Ⅰ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,當(dāng)m=
e
1
1
x
dx,n=|1+
2
i
|(i為虛數(shù)單位)時(shí),
角A對(duì)應(yīng)的“優(yōu)美函數(shù)”函數(shù)值f(A)=2,若a=2,c=
3
b,求△ABC的面積;
(Ⅱ)對(duì)于(Ⅰ)中的“優(yōu)美函數(shù)”f(x),若關(guān)于x的方程f(x)+log2k=0在區(qū)間[0,
π
2
]
上總有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=3an+2n.
(1)求證:數(shù)列{an-2}是等比數(shù)列. 
(2)若bn=n×(an-2),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x,-2≤x≤1且x∈Z,則f(x)的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)是定義在R上的奇函數(shù)且x>0時(shí),f(x)=2x2-x+3,則當(dāng)x<0時(shí),f(x)的解析式為( 。
A、2x2-x+3
B、-2x2+x-3
C、2x2+x+3
D、-2x2-x-3

查看答案和解析>>

同步練習(xí)冊(cè)答案