分析 (1)解絕對值不等式求得不等式|x-a|≤b的解集,再根據(jù)不等式|x-a|≤b的解集為{x|-1≤x≤3},求得a,b的值.
(2)把要求的式子變形,再利用基本不等式,求得z的最小值.
解答 解:(1)由題意可得b>0,
由不等式|x-a|≤b,可得-b≤x-a≤b,
∴a-b≤x≤a+b.
再根據(jù)不等式|x-a|≤b的解集為{x|-1≤x≤3},
可得$\left\{\begin{array}{l}{a-b=-1}\\{a+b=3}\end{array}\right.$,
∴$\left\{\begin{array}{l}{a=1}\\{b=2}\end{array}\right.$.
(2)由(1)知(y-1)(y-2)<0,
∴1<y<2.
z=$\frac{1}{y-a}$+$\frac{1}{b-y}$=($\frac{1}{y-1}$+$\frac{1}{2-y}$)•[(y-1)+(2-y)]=2+$\frac{2-y}{y-1}$+$\frac{y-1}{2-y}$,
∵1<y<2,
∴y-1>0,2-y>0,
∴z≥2+2$\sqrt{1}$=4,
當(dāng)且僅當(dāng) $\frac{2-y}{y-1}$=$\frac{y-1}{2-y}$,即 y=$\frac{3}{2}$時,等號成立,
此時,z取得最小值4.
點評 本題主要考查絕對值不等式的解法,基本不等式的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{10}$ | B. | $\sqrt{7}$ | C. | $\sqrt{13}$ | D. | $\sqrt{10+3\sqrt{3}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,4) | B. | (-∞,-1)∪(4,+∞) | C. | (-∞,4) | D. | (-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{3}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2] | B. | (-∞,-2) | C. | (-∞,-6] | D. | (-∞,-6) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com