9.若函數(shù)f(x)=|3x-2|-b有兩個零點,則實數(shù)b的取值范圍是0<b<2..

分析 由函數(shù)f(x)=|3x-2|-b有兩個零點,可得|3x-2|=b有兩個零點,從而可得函數(shù)y=|3x-2|函數(shù)y=b的圖象有兩個交點,結(jié)合函數(shù)的圖象可求b的范圍.

解答 解:由函數(shù)f(x)=|3x-2|-b有兩個零點,
可得|3x-2|=b有兩個零點,
從而可得函數(shù)y=|3x-2|函數(shù)y=b的圖象
有兩個交點,
結(jié)合函數(shù)的圖象可得,0<b<2時符合條件,
故答案為:0<b<2.

點評 本題主要考查函數(shù)的零點以及數(shù)形結(jié)合方法,數(shù)形結(jié)合是數(shù)學解題中常用的思想方法,能夠變抽象思維為形象思維,有助于把握數(shù)學問題的本質(zhì).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖所示的三角形數(shù)陣叫“萊布尼茲調(diào)和三角形”,它們是由整數(shù)的倒數(shù)組成的,第n行有n個數(shù)且兩端的數(shù)均為$\frac{1}{n}$(n≥2),并且相鄰兩行數(shù)之間有一定的關系,則第7行第4個數(shù)(從左往右數(shù))為( 。
A.$\frac{1}{140}$B.$\frac{1}{105}$C.$\frac{1}{60}$D.$\frac{1}{42}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=4,AC=2$\sqrt{3}$,BD=2,又點E在側(cè)棱PC上,且PC⊥平面BDE.
(1)求線段CE的長;
(2)求點A到平面PDC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=|2a-x|(a∈R).
(1)當a=2時,解不等式f(x)>6-|3x-2|;
(2)若對?∈R,f(x)+x>5恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在如圖所示的幾何體中,△ABC是正三角形,且EA⊥平面ABC,DB⊥平面ABC,M是AB的中點.
(Ⅰ)求證:CM⊥EM;
(Ⅱ)若AB=2$\sqrt{2}$,AE=1,BD=2,求DE與平面EMC所成角的正切值;
(Ⅲ)在(Ⅱ)的條件下,求點M到平面CDE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.觀察下列等式:32=52-42,52=132-122,72=252-242,92=412-402,…照此規(guī)律,第n個等式為(2n+1)2=(2n2+2n+1)2-(2n2+2n)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知關于x的不等式|x-a|≤b的解集為{x|-1≤x≤3}.
(1)求a,b的值;
(2)若(y-a)(y-b)<0,求z=$\frac{1}{y-a}$+$\frac{1}{b-y}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=|2x-1|+|x-a|,g(x)=x-1.
(1)當a=-1時,求不等式f(x)<g(x)的解集.
(2)如果?x∈R,f(x)≥1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2-|x+1|,x≤1}\\{(x-a)^{2},x>1}\end{array}\right.$,若y=f(x)-a-1恰有2個零點,則實數(shù)a的取值范圍是-1≤a≤0或a=1或a>3.

查看答案和解析>>

同步練習冊答案