已知a∈R,則“
a
a-1
≤0”是“指數(shù)函數(shù)y=ax在R上為減函數(shù)”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
分析:結(jié)合不等式的解法和指數(shù)函數(shù)單調(diào)性的性質(zhì),利用充分條件和必要條件的定義進行判斷即可.
解答:解:由
a
a-1
≤0的a(a-1)≤0且a-1≠0,解得0≤a<1,
若指數(shù)函數(shù)y=ax在R上為減函數(shù),則0<a<1,
∴“
a
a-1
≤0”是“指數(shù)函數(shù)y=ax在R上為減函數(shù)”的必要不充分條件.
故選:B.
點評:主要是考查了充分條件的判定的運用,利用不等式的解法和指數(shù)函數(shù)的單調(diào)性是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+1-a
a-x
(a∈R)
,
(1)證明函數(shù)y=f(x)的圖象關(guān)于點(a,-1)成中心對稱圖形;
(2)當(dāng)x∈[a+1,a+2]時,求證:f(x)∈[-2,-
3
2
]
;
(3)我們利用函數(shù)y=f(x)構(gòu)造一個數(shù)列{xn},方法如下:對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造數(shù)列的過程中,如果xi(i=2,3,4,…)在定義域中,構(gòu)造數(shù)列的過程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過程停止.
(i)如果可以用上述方法構(gòu)造出一個常數(shù)列{xn},求實數(shù)a的取值范圍;
(ii)如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個無窮數(shù)列{xn},求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2+(1+a)x+1+a+b=0(a,b∈R)的兩根分別為x1、x2,且0<x1<1<x2,則
aa+b
的取值范圍是
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對任意實數(shù)0<x1<x2<1,關(guān)于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有實數(shù)解
(3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當(dāng)0<a<b時,
b-a
b
<ln
b
a
b-a
a
(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,則“指數(shù)函數(shù)y=ax-1在R上為增函數(shù)”是“
a
a-1
>0
”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案