11.已知$\overrightarrow{a}$、$\overrightarrow$為互相垂直的單位向量,若向量$\overrightarrow{c}$滿足|$\overrightarrow{a}$+$\overrightarrow$-$\overrightarrow{c}$|=1,則|$\overrightarrow{c}$|的取值范圍是[$\sqrt{2}$-1,$\sqrt{2}$+1].

分析 作出圖形,由平面向量線性運算的幾何意義可知C在以P為圓心,以1為半徑的圓上.其中P為$\overrightarrow{a}+\overrightarrow$的終點.

解答 解:設$\overrightarrow{OA}=\overrightarrow{a}$,$\overrightarrow{OB}=\overrightarrow$,$\overrightarrow{OC}=\overrightarrow{c}$,$\overrightarrow{OP}=\overrightarrow{a}+\overrightarrow$,則|OA|=|OB|=1,OA⊥OB,
∴|OP|=$\sqrt{2}$,
∵|$\overrightarrow{a}+\overrightarrow-\overrightarrow{c}$|=1,即|$\overrightarrow{OP}-\overrightarrow{OC}$|=|$\overrightarrow{CP}$|=1,
∴C在以P為圓心,以1為半徑的圓上,
∴$\sqrt{2}-1$≤|OC|≤$\sqrt{2}+1$.
故答案為:[$\sqrt{2}-1$,$\sqrt{2}+1$].

點評 本題考查了平面向量線性運算的幾何意義,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知圓C:x2+y2=1,點P(x0,y0)在直線l:3x+2y-4=0上,若在圓C上總存在兩個不同的點A、B,使$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{OP}$,則x0的取值范圍是 ( 。
A.(0,$\frac{24}{13}$)B.(-$\frac{24}{13}$,0)C.(0,$\frac{13}{24}$)D.(0,$\frac{13}{12}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.函數(shù)y=arcsin(1-x)的定義域為{x|0≤x≤2},值域為[-$\frac{π}{2}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.為了得到函數(shù)$y=sin(2x+\frac{π}{3})$的圖象,可將函數(shù)y=sin2x的圖象向左平移m個單位長度或向右平移n個單位長度(m,n均為正數(shù)),則|m-n|的最小值是( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(m,1),如果向量$\overrightarrow{a}$+$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$平行,則$\overrightarrow{a}$•$\overrightarrow$等于( 。
A.-$\frac{5}{2}$B.-2C.-1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.直線x=0的傾斜角為( 。
A.0B.$\frac{π}{2}$C.1D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若函數(shù)f(x)=$\frac{k-x}{x}$在(-∞,0)上是減函數(shù),則實數(shù)k的取值范圍是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若點P(-1,$\sqrt{3}$)在圓x2+y2=m上,點Q(x0,y0)在圓x2+y2=m內(nèi),則d=$\sqrt{{x}_{0}^{2}+{y}_{0}^{2}}$的取值范圍為[0,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.求f(x)=tan(2x+$\frac{π}{3}$)的周期.

查看答案和解析>>

同步練習冊答案