【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)設(shè),若且有兩個零點,求的取值范圍.
【答案】(1)當(dāng)時,在上是增函數(shù);當(dāng)時,在,上是增函數(shù),在上是減函數(shù).(2)
【解析】
(1)求定義域以及導(dǎo)數(shù),對參數(shù)進(jìn)行分類討論,求解對應(yīng)情況下的單調(diào)性即可;
(2)由(1)中所得,可知的解析式,根據(jù)的單調(diào)性,將零點問題轉(zhuǎn)化為圖像相交的問題,數(shù)形結(jié)合,求解參數(shù)范圍.
(1)的定義域為,,
,
對于,,
當(dāng)時,,
則在上是增函數(shù).
當(dāng)時,
對于,有,則在上是增函數(shù).
當(dāng)時,
令,得或,
令,得,
所以在,上是增函數(shù),
在上是減函數(shù).
綜上,當(dāng)時,在上是增函數(shù);
當(dāng)時,在,上是增函數(shù),
在上是減函數(shù).
(2)由已知可得,
因為,所以,而,所以,
所以,所以在上單調(diào)遞增.
所以.
故有兩個零點,等價于
=在內(nèi)有兩個零點.
等價于有兩根,
顯然不是方程的根,
因此原方程可化為,
設(shè),,
由解得,或
由解得,
故在上單調(diào)遞減,在上單調(diào)遞增.
其圖像如下所示:
所以,
所以,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】手機等數(shù)碼產(chǎn)品中的存儲器核心部件是閃存芯片,閃存芯片有兩個獨立的性能指標(biāo):數(shù)據(jù)傳輸速度和使用壽命,數(shù)據(jù)傳輸速度的單位是,使用壽命指的是完全擦寫的次數(shù)(單位:萬次).某閃存芯片制造廠為了解產(chǎn)品情況,從一批閃存芯片中隨機抽取了100件作為樣本進(jìn)行性能測試,測試數(shù)據(jù)經(jīng)過整理得到如下的頻率分布直方圖(每個分組區(qū)間均為左閉右開),其中,,成等差數(shù)列且.
(1)估計樣本中閃存芯片的數(shù)據(jù)傳輸速度的中位數(shù).
(2)估計樣本中閃存芯片的使用壽命的平均數(shù).(每組數(shù)據(jù)以中間值為代表)
(3)規(guī)定數(shù)據(jù)傳輸速度不低于為優(yōu),使用壽命不低于10萬次為優(yōu),且兩項指標(biāo)均為優(yōu)的閃存芯片為級產(chǎn)品,僅有一項為優(yōu)的為級產(chǎn)品,沒有優(yōu)的為級產(chǎn)品.現(xiàn)已知樣本中有45件級產(chǎn)品,用樣本中不同級別產(chǎn)品的頻率代替每件產(chǎn)品為相應(yīng)級別的概率,從這一批產(chǎn)品中任意抽取4件,求其中至少有2件級產(chǎn)品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為2,過點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的右焦點為,定點,過點且斜率不為零的直線與橢圓交于,兩點,以線段為直徑的圓與直線的另一個交點為,試探究在軸上是否存在一定點,使直線恒過該定點,若存在,求出該定點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,為橢圓的左、右頂點,為其右焦點,是橢圓上異于,的動點,且面積的最大值為.
(1)求橢圓的方程及離心率;
(2)直線與橢圓在點處的切線交于點,當(dāng)點在橢圓上運動時,求證:以為直徑的圓與直線恒相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù),).
(1)求直線的直角坐標(biāo)方程及曲線的普通方程;
(2)直線和曲線相交于點,,設(shè)相交弦的長度為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線在平面直角坐標(biāo)系下的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線的普通方程及極坐標(biāo)方程;
(2)直線的極坐標(biāo)方程是,射線: 與曲線交于點與直線交于點,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)且,,,曲線的參數(shù)方程為為參數(shù)),以為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程及的直角坐標(biāo)方程;
(2)若曲線與曲線分別交于點,,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①:在平行四邊形中,,,將沿對角線折起,使,連結(jié),得到如圖②所示三棱錐.
(1)證明:平面;
(2)若,二面角的平面角的正切值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:和直線:,是的焦點,是上一點,過作拋物線的一條切線與軸交于,則外接圓面積的最小值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com