【題目】如圖, 是邊長(zhǎng)為的菱形, 平面 平面, .

(Ⅰ)求證:

(Ⅱ)求直線與平面所成角的正弦值.

【答案】(Ⅰ)見解析;(Ⅱ).

【解析】試題分析:(I)連接,根據(jù)菱形的性質(zhì)可知,結(jié)合,可得平面,垂直同一個(gè)平面的兩條直線平行,故四點(diǎn)共面,故.(2)以為坐標(biāo)原點(diǎn),分別以 的方向?yàn)?/span>軸, 軸的正方向,建立空間直角坐標(biāo)系.計(jì)算直線的方向向量和平面的法向量,利用線面角公式求得線面角的正弦值.

試題解析:

(Ⅰ)證明:連接,

因?yàn)?/span>是菱形,所以.

因?yàn)?/span>平面, 平面,

所以.

因?yàn)?/span>,所以平面.

因?yàn)?/span>平面, 平面,所以.

所以, , , 四點(diǎn)共面.

因?yàn)?/span>平面,所以.

(Ⅱ)如圖,以為坐標(biāo)原點(diǎn),分別以, 的方向?yàn)?/span>軸, 軸的正方向,建立空間直角坐標(biāo)系.

可以求得 , , .

所以 .

設(shè)平面的法向量為,

不妨取,則平面的一個(gè)法向量為.

因?yàn)?/span>,

所以 .

所以直線與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖. 圖中A點(diǎn)表示十月的平均最高氣溫約為,B點(diǎn)表示四月的平均最低氣溫約為. 下面敘述不正確的是 ( )

A. 各月的平均最低氣溫都在以上

B. 七月的平均溫差比一月的平均溫差大

C. 三月和十一月的平均最高氣溫基本相同

D. 平均最高氣溫高于的月份有5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知圓的圓心在直線上,且過點(diǎn),與直線相切.

)求圓的方程

)設(shè)直線與圓相交于,兩點(diǎn).求實(shí)數(shù)的取值范圍.

的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校準(zhǔn)備組織師生共60人,從南靖乘動(dòng)車前往廈門參加夏令營(yíng)活動(dòng),動(dòng)車票價(jià)格如表所示:(教師按成人票價(jià)購買,學(xué)生按學(xué)生票價(jià)購買).

運(yùn)行區(qū)間

成人票價(jià)(元/張)

學(xué)生票價(jià)(元/張)

出發(fā)站

終點(diǎn)站

一等座

二等座

二等座

南靖

廈門

26

22

16

若師生均購買二等座票,則共需1020元.
(1)參加活動(dòng)的教師有人,學(xué)生有人;
(2)由于部分教師需提早前往做準(zhǔn)備工作,這部分教師均購買一等座票,而后續(xù)前往的教師和學(xué)生均購買二等座票.設(shè)提早前往的教師有x人,購買一、二等座票全部費(fèi)用為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②若購買一、二等座票全部費(fèi)用不多于1032元,則提早前往的教師最多只能多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將一枚質(zhì)地均勻且四個(gè)面上分別標(biāo)有1,2,3,4的正四面體先后拋擲兩次,其底面落于桌面上,記第一次朝下面的數(shù)字為,第二次朝下面的數(shù)字為.表示一個(gè)基本事件.

請(qǐng)寫出所有基本事件;

求滿足條件“”為整數(shù)的事件的概率;

求滿足條件“”的事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個(gè)三角形的內(nèi)切圓,依此類推,圖10中有10個(gè)直角三角形的內(nèi)切圓,它們的面積分別記為S1 , S2 , S3 , …,S10 , 則S1+S2+S3+…+S10=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐S-ABCD中,底面ABCD為菱形,SD⊥平面ABCD,點(diǎn)ESD的中點(diǎn).

(1)求證:直線SB∥平面ACE

(2)求證:直線AC⊥平面SBD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“五一”假期期間,某餐廳對(duì)選擇、三種套餐的顧客進(jìn)行優(yōu)惠。對(duì)選擇套餐的顧客都優(yōu)惠10元,對(duì)選擇套餐的顧客優(yōu)惠20元。根據(jù)以往“五一”假期期間100名顧客對(duì)選擇、、三種套餐的情況得到下表:

選擇套餐種類

選擇每種套餐的人數(shù)

50

25

25

將頻率視為概率.

(I)若有甲、乙、丙三位顧客選擇某種套餐,求三位顧客選擇的套餐至少有兩樣不同的概率;

(II)若用隨機(jī)變量表示兩位顧客所得優(yōu)惠金額的綜合,求的分布列和期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1 , y1),點(diǎn)Q的坐標(biāo)為(x2 , y2),且x1≠x2 , y1≠y2 , 若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”,如圖為點(diǎn)P,Q的“相關(guān)矩形”示意圖.

(1)已知點(diǎn)A的坐標(biāo)為(1,0),
①若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)A,B的“相關(guān)矩形”的面積;
②點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(2)⊙O的半徑為 ,點(diǎn)M的坐標(biāo)為(m,3),若在⊙O上存在一點(diǎn)N,使得點(diǎn)M,N的“相關(guān)矩形”為正方形,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案