4.已知集合A={x,$\frac{y}{x}$,1},B={x2,x+y,0},若A=B,則x2014+y2015=1.

分析 根據(jù)集合的性質(zhì)得到x≠0,1,分別求出x,y的值,代入x2014+y2015,求出即可.

解答 解:∵集合{x2,x+y,0}={x,$\frac{y}{x}$,1},
由題意得:x≠0,1,∴$\frac{y}{x}$=0,則y=0,
∴x+y=1,x2=1,解得:x=-1,
∴x2014+y2015=(-1)2014+02015=1,
故答案為:1.

點(diǎn)評(píng) 本題考查了集合的運(yùn)算,考查集合的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)與y=x有相同圖象的一個(gè)函數(shù)是( 。
A.y=$\sqrt{{x}^{2}}$B.y=logaax(a>0且a≠1)
C.y=a${\;}^{lo{g}_{a}{a}^{x}}$(a>0且a≠1)D.y=$\frac{{x}^{2}}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.直線y=x+m的傾斜角為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖是正六棱柱的三視圖,其中畫法正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{-x,x≤0}\\{{x}^{2},x>0}\end{array}\right.$.若f(a)=4,則實(shí)數(shù)a=( 。
A.-4 或-2B.-4 或 2C.-2 或 4D.-2 或 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.點(diǎn)P(1,3)關(guān)于直線x+2y-2=0的對(duì)稱點(diǎn)為Q,則點(diǎn)Q的坐標(biāo)為(-1,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在多面體ABCDM中,△BCD是等邊三角形,△CMD是等腰直角三角形,∠CMB=90°,平面CMD⊥平面BCD,AB⊥平面BCD,點(diǎn)O為CD的中點(diǎn),連接OM.
(1)求證:OM∥平面ABD;
(2)若AB=BC=4,求三棱錐A-BDM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若a=20.5,b=ln2,c=${log_{\frac{1}{3}}}$2,則(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=($\frac{1}{2}$)${\;}^{{x}^{2}-x-1}$的單調(diào)遞增區(qū)間為( 。
A.(-∞,$\frac{1-\sqrt{5}}{2}$]B.[$\frac{1+\sqrt{5}}{2}$,+∞)C.(-∞,$\frac{1}{2}$)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案