15.有5盆互不相同的菊花,其中2盆為白色,2盆為黃色,1盆為紅色,現(xiàn)要擺成一排,要求紅色菊花在中間,白菊花不相鄰,黃色菊花也不相鄰,則共有16種不同的擺放發(fā)方法(用數(shù)字作答).

分析 由紅色菊花擺放在正中間,白色菊花不相鄰,黃色菊花也不相鄰,則白色菊花不相鄰,黃色菊也不相鄰,即紅菊花兩邊各一盆白色,黃色菊花,根據(jù)分步計數(shù)原理可得.

解答 解:由紅色菊花擺放在正中間,白色菊花不相鄰,黃色菊花也不相鄰,則白色菊花不相鄰,黃色菊也不相鄰,即紅菊花兩邊各一盆白色,黃色菊花,
故有C21C21A22A22=16.
故答案為:16.

點評 本題主要考查排列組合、兩個基本原理的實際應(yīng)用,注意不相鄰問題用插空法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線3x-2y+5=0關(guān)于x軸對稱的直線方程是( 。
A.3x-2y+5=0B.3x+2y-5=0C.3x+2y+5=0D.3x-2y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.為防止部分學(xué)生考試時用搜題軟件作弊,命題組指派5名教師對數(shù)學(xué)卷的選擇題、填空題和解答題這3種題型進(jìn)行改編,則每種題型至少指派一名教師的不同分派方法種數(shù)為( 。
A.150B.180C.200D.280

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.方程$\frac{x|x|}{16}+\frac{y|y|}{9}=-1$的曲線為函數(shù)y=f(x)的圖象,對于函數(shù)y=f(x),下面結(jié)論中錯誤的是( 。
A.f(0)=-3B.函數(shù)y=f(x)的值域是R
C.函數(shù)f(x)在R上單調(diào)遞減D.函數(shù)F(x)=4f(x)+5x有兩個相異零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若規(guī)定$|\begin{array}{l}{a}&\\{c}&ndvldvn\end{array}|$=ad-bc(a、b∈R,a≠b),則$|\begin{array}{l}{a}&{-b}\\&{a}\end{array}|$與$|\begin{array}{l}{a}&{-a}\\&\end{array}|$的大小關(guān)系>.(填“>”、“=”或“<”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)M(x1,y1),N(x2,y2)為兩個不同的點,直線l:ax+by+c=0,δ=$\frac{a{x}_{1}+b{y}_{1}+c}{a{x}_{2}+b{y}_{2}+c}$.有下列命題:
①不論δ為何值,點N都不在直線l上;
②若直線l垂直平分線段MN,則δ=1;
③若δ=-1,則直線l經(jīng)過線段MN的中點;
④若δ>1,則點M、N在直線l的同側(cè)且l與線段MN的延長線相交.
其中正確命題的序號是①③④(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知log${\;}_{\frac{1}{2}}}$a<log${\;}_{\frac{1}{2}}}$b,則下列不等式一定成立的是(  )
A.ln(a-b)>0B.$\frac{1}{a}>\frac{1}$C.${(\frac{1}{4})^a}<{(\frac{1}{3})^b}$D.3a-b<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知數(shù)列{an}的前n項和Sn=n2-n,若17<an<20,則n=(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=$\frac{|x|-a}$(a>0,b>0),因其圖象類似于漢字“囧”字,被稱為“囧函數(shù)”,我們把函數(shù)f(x)的圖象與y軸的交點關(guān)于原點的對稱點稱為函數(shù)f(x)的“囧點”,以函數(shù)f(x)的“囧點”為圓心,與函數(shù)f(x)的圖象有公共點的圓,皆稱函數(shù)f(x)的“囧圓”,則當(dāng)a=b=1時,有下列命題:
①對任意x∈(0,+∞),都有f(x)>$\frac{1}{x}$成立;
②存在x0∈($\frac{π}{6}$,$\frac{π}{3}$),使f(x0)<tanx0成立;
③函數(shù)f(x)的“囧點”與函數(shù)y=lnx圖象上的點的最短距離是$\sqrt{2}$;
④函數(shù)f(x)的所有“囧圓”中,其周長的最小值為2$\sqrt{3}$π.
其中的正確命題有②③④(寫出所有正確命題的序號).

查看答案和解析>>

同步練習(xí)冊答案