【題目】如圖,在三棱柱ABC﹣A1B1C1中,E,F分別為A1C1和BC的中點,M,N分別為A1B和A1C的中點.求證:
(1)MN∥平面ABC;
(2)EF∥平面AA1B1B.
【答案】(1)證明見解析;(2)證明見解析;
【解析】
(1)推導(dǎo)出MN∥BC,由此能證明MN∥平面ABC.
(2)取A1B1的中點D,連接DE,BD.推導(dǎo)出四邊形DEFB是平行四邊形,從而EF∥BD,由此能證明EF∥平面AA1B1B.
證明:(1)∵M、N分別是A1B和A1C中點.
∴MN∥BC,
又BC平面ABC,MN平面ABC,
∴MN∥平面ABC.
(2)如圖,取A1B1的中點D,連接DE,BD.
∵D為A1B1中點,E為A1C1中點,
∴DE∥B1C1且,
在三棱柱ABC﹣A1B1C1中,側(cè)面BCC1B1是平行四邊形,
∴BC∥B1C1且BC=B1C1,∵F是BC的中點,∴BF∥B1C1且,
∴DE∥BF且DE=BF,∴四邊形DEFB是平行四邊形,∴EF∥BD,
又BD平面AA1B1B,EF平面AA1B1B,
∴EF∥平面AA1B1B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:①函數(shù);
②向量,,且ω>0,;
③函數(shù)的圖象經(jīng)過點
請在上述三個條件中任選一個,補充在下面問題中,并解答.
已知 ,且函數(shù)f(x)的圖象相鄰兩條對稱軸之間的距離為.
(1)若,且,求f(θ)的值;
(2)求函數(shù)f(x)在[0,2π]上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電動車售后服務(wù)調(diào)研小組從汽車市場上隨機抽取20輛純電動汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計結(jié)果分成5組:,繪制成如圖所示的頻率分布直方圖.
(1)求續(xù)駛里程在的車輛數(shù);
(2)求續(xù)駛里程的平均數(shù);
(3)若從續(xù)駛里程在的車輛中隨機抽取2輛車,求其中恰有一輛車的續(xù)駛里程在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】請用空間向量求解已知正四棱柱中,,, 分別是棱,上的點,且滿足,.
求異面直線,所成角的余弦值;
求面與面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是拋物線上的一點,過點作兩條直線與,分別與拋物線相交于異于點的兩點.
若直線過點且的重心在軸上,求直線的斜率;
若直線的斜率為1且的垂心在軸上,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若, ,求函數(shù)圖像上任意一點處切線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)為偶函數(shù),求實數(shù)的值;
(2)若,求函數(shù)的單調(diào)遞減區(qū)間;
(3)當時,若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是各項均為正數(shù)的等比數(shù)列,.
(1)求的通項公式;
(2)設(shè),求數(shù)列的前n項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com