設(shè)銳角三角形ABC的內(nèi)角A,B,C的對邊分別為,且.
(1)求角的大小;
(2)若,求的面積及.
(1);(2).
解析試題分析:(1)由正弦定理,有,那么可以將條件轉(zhuǎn)化成角的關(guān)系:,得到,再由銳角三角形得到;(2)已知,夾角,可直接利用正弦定理的面積公式,求出面積為;又由余弦定理:,可得:,所以.
試題解析:(1),由正弦定理有,
可得.
由于,
故有
又因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/93/9/1snpk1.png" style="vertical-align:middle;" />是銳角,所以:.
(2)依題意得:.
所以由余弦定理可得:
.
考點(diǎn):正弦定理,余弦定理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,cos B=.
(1)求cos(A+C)的值;
(2)求sin的值;
(3)若·=20,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某旅游景點(diǎn)有一處山峰,游客需從景點(diǎn)入口A處向下沿坡角為α的一條小路行進(jìn)a百米后到達(dá)山腳B處,然后沿坡角為β的山路向上行進(jìn)b百米后到達(dá)山腰C處,這時(shí)回頭望向景點(diǎn)入口A處俯角為θ,由于山勢變陡到達(dá)山峰D坡角為γ,然后繼續(xù)向上行進(jìn)c百米終于到達(dá)山峰D處,游覽風(fēng)景后,此游客打算乘坐由山峰D直達(dá)入口A的纜車下山結(jié)束行程,如圖所示,假設(shè)A,B,C,D四個(gè)點(diǎn)在同一豎直平面.
(1)求B,D兩點(diǎn)的海拔落差h;
(2)求AD的長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,設(shè)向量m=(a,b),n=(sin B,sin A),p=(b-2,a-2).
(1)若m∥n,求證:△ABC為等腰三角形;
(2)若m⊥p,邊長c=2,C=,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,角A,B,C對應(yīng)的邊分別是 a,b,c.已知cos 2A-3cos(B+C)=1.
(1)求角A的大;
(2)若△ABC的面積S=5,b=5,求sin Bsin C的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的最小正周期和對稱軸的方程;
(2)設(shè)的角的對邊分別為,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,,函數(shù).
(1)求的最大值,并求取最大值時(shí)的取值集合;
(2)已知 分別為內(nèi)角的對邊,且成等比數(shù)列,角為銳角,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,角A,B,C所對的邊分別為a,b,c,且(2a+c)··+c·=0.
(1)求角B的大;
(2)若b=2,試求·的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com