【題目】某糧食店經(jīng)銷小麥,年銷售量為6000千克,每千克小麥進(jìn)貨價為2.8元,銷售價為3.4元,全年進(jìn)貨若干次,每次的進(jìn)貨量均為千克(),運費為100/次,并且全年小麥的總存儲費用為元.

1)用(千克)表示該糧食店經(jīng)銷小麥的年利潤(元);

2)每次進(jìn)貨量為多少千克時,能使年利潤最大?

【答案】1.21000千克

【解析】

1)由年銷售總量為包,每次進(jìn)貨均為包,可得進(jìn)貨次數(shù),進(jìn)而根據(jù)每包進(jìn)價為元,銷售價為元,計算出收入,由運費為/次,全年保管費為元計算出成本,相減可得利潤的表達(dá)式;

2)由(1)中函數(shù)的解析式,由函數(shù)的單調(diào)性,結(jié)合的實際意義,可得利潤最大時,每次進(jìn)貨量.

1)由題意可知:一年總共需要進(jìn)貨)次

整理得:

2

上遞減

當(dāng)(千克)時,年利潤最大

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列與等比數(shù)列是非常數(shù)的實數(shù)列,設(shè).

(1)請舉出一對數(shù)列,使集合中有三個元素;

(2)問集合中最多有多少個元素?并證明你的結(jié)論;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體ABCDA'B'C'D'棱長為2,并且E,F分別是棱AA',CC'的中點.

(Ⅰ)求證:平面BED'F⊥平面BB'D'D;

(Ⅱ)求直線A'B'與平面BED'F所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓經(jīng)過點,左、右焦點分別是,,點在橢圓上,且滿足點只有兩個.

(Ⅰ)求橢圓的方程;

(Ⅱ)過且不垂直于坐標(biāo)軸的直線交橢圓,兩點,在軸上是否存在一點,使得的角平分線是軸?若存在求出,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,連接橢圓的四個頂點得到的菱形的面積為4。

  1. 求橢圓的方程;
  2. 設(shè)直線與橢圓相交于不同的兩點,已知點的坐標(biāo)為(),點在線段的垂直平分線上,且,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某學(xué)校的特長班有50名學(xué)生,其中有體育生20名,藝術(shù)生30名,在學(xué)校組織的一次體檢中,該班所有學(xué)生進(jìn)行了心率測試,心率全部介于50次/分到75次/分之間,現(xiàn)將數(shù)據(jù)分成五組,第一組[50,55),第二組[55,60),…,第五組[70,75],按上述分組方法得到的頻率分布直方圖如圖所示.因為學(xué)習(xí)專業(yè)的原因,體育生常年進(jìn)行系統(tǒng)的身體鍛煉,藝術(shù)生則很少進(jìn)行系統(tǒng)的身體鍛煉,若前兩組的學(xué)生中體育生有8名.

(1)根據(jù)頻率分布直方圖及題設(shè)數(shù)據(jù)完成下列2×2列聯(lián)表.

心率小于60次/分

心率不小于60次/分

合計

體育生

20

藝術(shù)生

30

合計50

(2)根據(jù)(1)中表格數(shù)據(jù)計算可知,________(填“有”或“沒有”)99.5%的把握認(rèn)為“心率小于60次/分與常年進(jìn)行系統(tǒng)的身體鍛煉有關(guān)”.

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在心理學(xué)研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機(jī)分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結(jié)果來評價兩種心理暗示的作用,現(xiàn)有6名男志愿者A1A2,A3A4,A5A6和4名女志愿者B1,B2,B3B4,從中隨機(jī)抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.

(I)求接受甲種心理暗示的志愿者中包含A1但不包含的頻率。

(II)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)求在區(qū)間上的極小值和極大值;

(2)求為自然對數(shù)的底數(shù))上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從集市上買回來的蔬菜仍存有殘留農(nóng)藥,食用時需要清洗數(shù)次,統(tǒng)計表中的表示清洗的次數(shù),表示清洗次后千克該蔬菜殘留的農(nóng)藥量(單位:微克).

(1)在如圖的坐標(biāo)系中,描出散點圖,并根據(jù)散點圖判斷,哪一個適宜作為清洗次后千克該蔬菜殘留的農(nóng)藥量的回歸方程類型;(給出判斷即可,不必說明理由)

(2)根據(jù)判斷及下面表格中的數(shù)據(jù),建立關(guān)于的回歸方程;

表中,.

(3)對所求的回歸方程進(jìn)行殘差分析.

附:①線性回歸方程中系數(shù)計算公式分別為,;

說明模擬效果非常好;

,,,.

查看答案和解析>>

同步練習(xí)冊答案