13.已知數(shù)列{an}滿足an+2=qan(q為實(shí)數(shù),且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差數(shù)列.
(1)求q的值和{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{{{{log}_2}{a_{2n}}}}{{{a_{2n-1}}}}$,n∈N*,求數(shù)列{bn}的前n項(xiàng)和Sn,若不等式λ<Sn+$\frac{n}{{2}^{n-1}}$對(duì)一切n∈N*恒成立,求λ的取值范圍.

分析 (1)通過用q表示出a3、a4、a5,利用a2+a3,a3+a4,a4+a5成等差數(shù)列可得方程q2-3q+2=0,進(jìn)而計(jì)算可得q的值,分奇偶項(xiàng)計(jì)算可得通項(xiàng)公式;
(2)通過(1)利用錯(cuò)位相減法計(jì)算可知Sn的表達(dá)式,進(jìn)而利用等比數(shù)列的求和公式計(jì)算可知Sn+$\frac{n}{{2}^{n-1}}$=4-$\frac{1}{{2}^{n-2}}$,通過考查f(n)=4-$\frac{1}{{2}^{n-2}}$的單調(diào)性,計(jì)算即得結(jié)論.

解答 解:(1)依題意,a3=q,a4=2q,a5=q2,
又a2+a3,a3+a4,a4+a5成等差數(shù)列,
∴2(q+2q)=2+q+2q+q2,即q2-3q+2=0,
解得:q=2或q=1(舍),
∴a2n-1=2n-1,a2n=2n,
即數(shù)列{an}的通項(xiàng)公式an=$\left\{\begin{array}{l}{{2}^{\frac{n-1}{2}},}&{n為奇數(shù)}\\{{2}^{\frac{n}{2}},}&{n為偶數(shù)}\end{array}\right.$;
(2)由(1)可知bn=$\frac{{{{log}_2}{a_{2n}}}}{{{a_{2n-1}}}}$=$\frac{n}{{2}^{n-1}}$,n∈N*,
則Sn=1•$\frac{1}{{2}^{0}}$+2•$\frac{1}{2}$+…+n•$\frac{1}{{2}^{n-1}}$,
$\frac{1}{2}$Sn=1•$\frac{1}{2}$+2•$\frac{1}{{2}^{2}}$+…+(n-1)•$\frac{1}{{2}^{n-1}}$+n•$\frac{1}{{2}^{n}}$,
兩式相減得:$\frac{1}{2}$Sn=1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$,
∴Sn+$\frac{n}{{2}^{n-1}}$=2+1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-2}}$-n•$\frac{1}{{2}^{n-1}}$+$\frac{n}{{2}^{n-1}}$
=2+1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-2}}$
=2+$\frac{1-\frac{1}{{2}^{n-1}}}{1-\frac{1}{2}}$
=4-$\frac{1}{{2}^{n-2}}$,
∵f(n)=4-$\frac{1}{{2}^{n-2}}$隨著n的增大而增大,
∴f(n)≥f(1)=4-$\frac{1}{{2}^{1-2}}$=2,
故λ的取值范圍是:(-∞,2).

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查錯(cuò)位相減法,考查分類討論的思想,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}各項(xiàng)均不為0,其前n項(xiàng)和為Sn,且a1=1,2Sn=anan+1,則Sn=$\frac{n(n+1)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知無窮數(shù)列{an}滿足an+1=p•an+$\frac{q}{a_n}$(n∈N*).其中p,q均為非負(fù)實(shí)數(shù)且不同時(shí)為0.
(1)若p=$\frac{1}{2}$,q=2,且a3=$\frac{41}{20}$,求a1的值;
(2)若a1=5,p•q=0,求數(shù)列{an}的前n項(xiàng)和Sn;
(3)若a1=2,q=1,且{an}是單調(diào)遞減數(shù)列,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知P是△ABC內(nèi)一點(diǎn),$\overrightarrow{AP}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$,△PAC的面積為2016,則△PAB的面積為4032.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知i為虛數(shù)單位,復(fù)數(shù)z=$\frac{1-2i}{a+i}$的實(shí)部與虛部互為相反數(shù),則實(shí)數(shù)a=(  )
A.-1B.1C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,∠BAC=90°,AB=1,AC=2,$\overrightarrow{BD}$=$\frac{1}{3}$$\overrightarrow{BC}$,$\overrightarrow{AE}$=$\frac{1}{3}$$\overrightarrow{AB}$,DE的延長線交CA的延長線于點(diǎn)F,則$\overrightarrow{AD}$•$\overrightarrow{AF}$的值為$-\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}為正項(xiàng)等差數(shù)列,滿足$\frac{1}{{a}_{1}}$+$\frac{4}{{a}_{2k-1}}$≤1(其中k∈N*,且k≥2),則ak的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.計(jì)算$\frac{1}{(x+1)(x+2)}$+$\frac{1}{(x+2)(x+3)}$+$\frac{1}{(x+3)(x+4)}$+…+$\frac{1}{(x+2015)(x+2016)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}滿足a1=2和3an+1=an,n=1,2,…,
(1)證明:數(shù)列{an}為等比數(shù)列,并寫出它的通項(xiàng)公式;
(2)記bn=an+n,n=1,2,…,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案