【題目】霧霾天氣是一種大氣污染狀態(tài),PM2.5被認為是造成霧霾天氣的“元兇”,PM2.5日均值越小,空氣質(zhì)量越好.國家環(huán)境標準設定的PM2.5日均值(微克/立方米)與空氣質(zhì)量等級對應關系如表:

PM2.5日均值
(微克/立方米)

0﹣﹣35

35﹣﹣75

75﹣﹣115

115﹣﹣150

150﹣﹣250

250以上

空氣質(zhì)量等級

1級
優(yōu)

2級

3級
輕度污染

4級
中度污染

5級
重度污染

6級
嚴重污染

由某市城市環(huán)境監(jiān)測網(wǎng)獲得4月份某5天甲、乙兩城市的空氣質(zhì)量指數(shù)數(shù)據(jù),用莖葉圖表示,如圖所示.

(1)試根據(jù)統(tǒng)計數(shù)據(jù),分別寫出兩城區(qū)的PM2.5日均值的中位數(shù),并從中位數(shù)角度判斷哪個城區(qū)的空氣質(zhì)量較好?
(2)考慮用頻率估計概率的方法,試根據(jù)統(tǒng)計數(shù)據(jù),估計甲城區(qū)某一天空氣質(zhì)量等級為3
(3)分別從甲、乙兩個城區(qū)的統(tǒng)計數(shù)據(jù)中任取一個,試求這兩城區(qū)空氣質(zhì)量等級相同的概率.

【答案】
(1)

解:甲城市5天數(shù)據(jù)由小到大排列:

59,83,87,95,116,

乙城市5天數(shù)據(jù)由小到大排列:

66,68,85,88,98,

∴甲的中位數(shù)是87,乙的中位數(shù)是85,

∴乙城市的空氣質(zhì)量較好.


(2)

解:根據(jù)上面的統(tǒng)計數(shù)據(jù),可得在這五天中甲城市空氣質(zhì)量等級為3級輕度污染的頻率為

則估計甲城市某一天的空氣質(zhì)量等級為3級輕度污染的概率為


(3)

解:設事件A:從甲城市和乙城市的上述數(shù)據(jù)中分別任取一個,這兩個城市的空氣質(zhì)量等級相同,

由題意可知,從甲城市和乙城市的監(jiān)測數(shù)據(jù)中分別任取一個,共有25個結(jié)果,分別記為:

(59,66),(59,68),(59,85),(59,88)(59,98)

(83,66),(83,68),(83,85),(83,88)(83,98)

(87,66),(87,68),(87,85),(87,88)(87,98)

(95,66),(95,68),(95,85),(95,88)(95,98)

(116,66),(116,68),(116,85),(116,88)(116,98),

其數(shù)據(jù)表示兩城市空氣質(zhì)量等級相同的包括同為2級良的為甲59,乙66,乙68;

同為3級輕度污染的為甲83,甲87,甲95; 乙85,乙88,乙98;則空氣質(zhì)量等級相同的為:

(59,66),(59,68),

(83,85),(83,88),(83,98),

(87,85),(87,88),(87,98),

(95,85),(95,88),(95,98),

共11個結(jié)果.

所以這兩個城市空氣質(zhì)量等級相同的概率為


【解析】(1)由莖葉圖可知甲乙兩個城市5天數(shù)據(jù)由小到大排列,求出中位數(shù),比較兩個中位數(shù)的大小可得哪個城市的空氣質(zhì)量較好;(2)由莖葉圖可知在抽取的五天中,甲城市空氣質(zhì)量等級為3級輕度污染的頻數(shù)為3,進而得到頻率,進而估算出概率;(3)從甲城市和乙城市的統(tǒng)計數(shù)據(jù)中任取一個,共有25種不同情況,統(tǒng)計這兩個城市空氣質(zhì)量等級相同的情況個數(shù),代入古典概型概率計算公式可得答案
【考點精析】掌握莖葉圖是解答本題的根本,需要知道莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進行比較,將數(shù)的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數(shù),每個數(shù)具體是多少.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若正項數(shù)列{an}滿足: =an+1﹣an(a∈N*),則稱此數(shù)列為“比差等數(shù)列”.
(1)請寫出一個“比差等數(shù)列”的前3項的值;
(2)設數(shù)列{an}是一個“比差等數(shù)列”
(i)求證:a2≥4;
(ii)記數(shù)列{an}的前n項和為Sn , 求證:對于任意n∈N*,都有Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐A﹣BCD的各個棱長都相等,E,F(xiàn)分別是棱AB,CD的中點,則EF與BC所成的角是(

A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖給出的是計算 的值的一個程序框圖,判斷框內(nèi)應填入的條件是(

A.i<20
B.i>20
C.i<10
D.i>10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD中,PD⊥底面ABCD,且底面ABCD是邊長為2的正方形,M、N分別為PB、PC的中點.

(1)證明:MN∥平面PAD;
(2)若PB與平面ABCD所成的角為45°,求三棱錐C﹣BDN的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子裝有六張卡片,上面分別寫著如下六個函數(shù): .

(I)判斷這個函數(shù)的奇偶性;

(II)從中任意拿取兩張卡片,若其中至少有一張卡片上寫著的函數(shù)為奇函數(shù).在此條件下,求兩張卡片上寫著的函數(shù)相加得到的新函數(shù)為奇函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的方程為 ,過點的一條直線與拋物線交于兩點,若拋物線在兩點的切線交于點.

(1)求點的軌跡方程;

(2)設直線的斜率存在,取為,取直線的斜率為,請驗證是否為定值?若是,計算出該值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓x2+4y2=4,直線l:y=x+m
(1)若l與橢圓有一個公共點,求m的值;
(2)若l與橢圓相交于P、Q兩點,且|PQ|等于橢圓的短軸長,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) , ,且的最小值為

(1)求的值;

(2)若不等式對任意恒成立,其中是自然對數(shù)的底數(shù),求的取值范圍;

(3)設曲線與曲線交于點,且兩曲線在點處的切線分別為, .試判斷, 軸是否能圍成等腰三角形?若能,確定所圍成的等腰三角形的個數(shù);若不能,請說明理由.

查看答案和解析>>

同步練習冊答案