A. | 2 | B. | 4 | C. | 5 | D. | 3 |
分析 由基本不等式得:y=$\frac{{{x^2}+3x+1}}{x}$=x+$\frac{1}{x}$+3≥2+3=5,即可得出結(jié)論.
解答 解:∵x>0,∴$\frac{1}{x}$>0,
由基本不等式得:y=$\frac{{{x^2}+3x+1}}{x}$=x+$\frac{1}{x}$+3≥2+3=5
當(dāng)且僅當(dāng)x=$\frac{1}{x}$,即x=1時(shí)取等號(hào),
∴當(dāng)x=1時(shí),y=$\frac{{{x^2}+3x+1}}{x}$,(x>0)的最小值為5,
故選:C.
點(diǎn)評(píng) 本題考查基本不等式的應(yīng)用,注意基本不等式使用條件:一正、二定、三相等,即不等式的各項(xiàng)都是正數(shù),和或積中出現(xiàn)定值、等號(hào)成立條件具備.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-∞,-\frac{1}{3}})$ | B. | $[{-\frac{1}{3},+∞})$ | C. | $({-\frac{1}{3},+∞})$ | D. | $({-∞,-\frac{1}{3}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k<7 | B. | k<8 | C. | k<9 | D. | k<10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com