19.若框圖所給的程序運行的結(jié)果為S=90,那么判斷框中應(yīng)填入的關(guān)于k的判斷條件是( 。
A.k<7B.k<8C.k<9D.k<10

分析 先運行循環(huán)體,看運行后運行的結(jié)果為S=90就跳出循環(huán)體,弄清循環(huán)次數(shù),從而得到判斷框的條件.

解答 解:由題意,模擬程序的運行,可得:
k=10,S=1
第一次運行循環(huán)體得:S=1×10=10,k=10-1=9,
第二次運行循環(huán)體得:S=10×9=90,k=9-1=8,
由題意,此時應(yīng)跳出循環(huán)體,輸出結(jié)果,
故k的判斷條件是k<9.
故選:C.

點評 算法和程序框圖是新課標(biāo)新增的內(nèi)容,在近兩年的新課標(biāo)地區(qū)高考都考查到了,這啟示我們要給予高度重視,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知P($\sqrt{2}$,$\sqrt{3}$)在雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1,其左、右焦點分別為F1、F2,△PF1F2的內(nèi)切圓與x軸相切于點M,則$\overrightarrow{MP}$•$\overrightarrow{M{F}_{2}}$的值為(  )
A.$\sqrt{3}$+1B.$\sqrt{2}$-1C.$\sqrt{2}$+1D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知不等式|2x-t|-1<0的解集為(0,1),則t的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若偶函數(shù)f(x),當(dāng)x∈R+時,滿足f′(x)>$\frac{f(x)}{x}$,且f(1)=0,則不等式$\frac{f(x)}{x}$≥0的解集是[-1,0)∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=$\frac{{{x^2}+3x+1}}{x}$,(x>0)的最小值為( 。
A.2B.4C.5D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,直四棱柱ABCD-A1B1C1D1底面是邊長為1的正方形,高AA1=$\sqrt{2}$,點A是平面α內(nèi)的一個定點,AA1與α所成角為$\frac{π}{3}$,點C1在平面α內(nèi)的射影為P,當(dāng)四棱柱ABCD-A1B1C1D1按要求運動時(允許四棱柱上的點在平面α的同側(cè)或異側(cè)),點P所經(jīng)過的區(qū)域的面積=$2\sqrt{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.由tan(α+β)=$\frac{tanα+tanβ}{1-tanα•tanβ}$,可得:tanα+tanβ=tan(α+β)[1-tanα•tanβ],根據(jù)此推理及公式解決下列問題:
(1)若A+B=225°,則(1+tanA)(1+tanB)2
(2)不用計算器求值:(1+tan1°)(1+tan2°)(1+tan3°)•…•(1+tan44°)=222

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=sin(πx-$\frac{π}{3}}$)-1是(  )
A.周期為1的奇函數(shù)B.周期為2的偶函數(shù)
C.周期為1的非奇非偶函數(shù)D.周期為2的非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a}.
(1)求(∁RA)∩B;  
(2)若A⊆C,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案