7.不等式$\frac{x-2}{3-x}$≤1的解集為{x|x>3或x≤$\frac{5}{2}$}.

分析 將不等式轉(zhuǎn)化為解不等式組問題,解出即可.

解答 解:∵$\frac{x-2}{3-x}$≤1,
∴$\frac{2x-5}{x-3}$≥0,
∴$\left\{\begin{array}{l}{2x-5≥0}\\{x-3>0}\end{array}\right.$或$\left\{\begin{array}{l}{2x-5≤0}\\{x-3<0}\end{array}\right.$,
解得:x>3或x≤$\frac{5}{2}$,
∴不等式的解集是{x|x>3或x≤$\frac{5}{2}$}.

點(diǎn)評(píng) 本題考查了解不等式問題,考查分類討論思想,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.若tanα=2,求下列各式的值:
(1)$\frac{2cosα+3sinα}{cosα+2sinα}$;
(2)sinαcosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,輸出的S值為8,則判斷條件是( 。
A.k<2B.k<4C.k<3D.k≤3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知a,b∈(0,+∞),則下列不等式中不成立的是( 。
A.a+b+$\frac{1}{\sqrt{ab}}$≥2$\sqrt{2}$B.(a+b)($\frac{1}{a}$+$\frac{1}$)≥4C.$\frac{{a}^{2}+^{2}}{\sqrt{ab}}$≥2$\sqrt{ab}$D.$\frac{2ab}{a+b}$>$\sqrt{ab}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知命題p:方程$\frac{{x}^{2}}{2m}$+$\frac{{y}^{2}}{1-m}$=1表示焦點(diǎn)在y軸上的橢圓;命題q:雙曲線$\frac{y^2}{5}-\frac{x^2}{m}$=1的離心率$e∈(1,\sqrt{3})$,若p、q有且只有一個(gè)為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.一個(gè)空間幾何體的三視圖如圖所示,則該幾何體的表面積為48+8$\sqrt{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知f(α)=$\frac{sin(α-\frac{5π}{2})cos(\frac{3π}{2}+α)tan(π-α)}{tan(-α-π)sin(π-α)}$.
(1)化簡(jiǎn)f(α)
(2)若cos(α+$\frac{3π}{2}$)=$\frac{1}{5}$且α是第二象限的角,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若正實(shí)數(shù)a,b滿足ab=1,則2-a•4${\;}^{-\frac{2}}$最大值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.若a<0,比較2a,($\frac{1}{2}$)a,0.2a的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案