4.下列選項(xiàng)中敘述正確的是( 。
A.終邊不同的角同一三角函數(shù)值可以相等
B.三角形的內(nèi)角是第一象限角或第二象限角
C.第一象限是銳角
D.第二象限的角比第一象限的角大

分析 分別舉例說(shuō)明四個(gè)選項(xiàng)的正誤得答案.

解答 解:對(duì)于A,終邊不同的角同一三角函數(shù)值可以相等,正確,如$sin\frac{π}{6}=sin\frac{5π}{6}$;
對(duì)于B,三角形的內(nèi)角是第一象限角或第二象限角,錯(cuò)誤,如$\frac{π}{2}$是終邊在坐標(biāo)軸上的角;
對(duì)于C,第一象限是銳角,錯(cuò)誤,如$-\frac{5π}{3}$是第一象限角,不是銳角;
對(duì)于D,第二象限的角比第一象限的角大,錯(cuò)誤,如$\frac{3π}{4}$是第二象限角,$\frac{9π}{4}$是第一象限角,但$\frac{3π}{4}<\frac{9π}{4}$.
故選:A.

點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,考查了象限角與軸線角的概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列各組向量中,可以作為基底的是( 。
A.${\vec e_1}$=(0,0),${\vec e_2}$=(1,2)B.${\vec e_1}$=(0,-1),${\vec e_2}$=(-1,0)
C.${\vec e_1}$=(-2,3),${\vec e_2}$=(4,-6)D.${\vec e_1}$=(1,3),${\vec e_2}$=(4,12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知$\overrightarrow{e_1}$,$\overrightarrow{e_2}$不共線,$\overrightarrow a$=$\overrightarrow{e_1}$+2$\overrightarrow{e_2}$,$\overrightarrow b$=2$\overrightarrow{e_1}$+λ$\overrightarrow{e_2}$,要使$\overrightarrow a$,$\overrightarrow b$作為平面內(nèi)所有向量的一組基底,則實(shí)數(shù)λ的取值范圍是(-∞,4)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.向量($\overrightarrow{AB}$+$\overrightarrow{PB}$)+($\overrightarrow{BO}$+$\overrightarrow{BM}$)+$\overrightarrow{OP}$化簡(jiǎn)后等于( 。
A.$\overrightarrow{BC}$B.$\overrightarrow{AB}$C.$\overrightarrow{AC}$D.$\overrightarrow{AM}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知cosα=$\frac{1}{7}$,cos(α-β)=$\frac{13}{14}$,且0<β<α<$\frac{π}{2}$,
(1)求tanα+tan2α的值;    
(2)求β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知△ABC的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(8,2);
(1)求AB邊的中線所在直線方程.
(2)求AC的中垂線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)復(fù)數(shù)z滿足(1+z)•i=z,則復(fù)數(shù)$\overline{z}$為( 。
A.$\frac{1}{2}$+$\frac{1}{2}$iB.-$\frac{1}{2}$+$\frac{1}{2}$iC.$\frac{1}{2}$-$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知O為坐標(biāo)原點(diǎn),P為雙曲線$\frac{x^2}{a^2}$-y2=1(a>0)上一點(diǎn),過(guò)P作兩條漸近線的平行線交點(diǎn)分別為A,B,若平行四邊形OAPB的面積為$\frac{{\sqrt{3}}}{2}$,則雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{10}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)點(diǎn)A1、A2分別為橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的下頂點(diǎn)和上頂點(diǎn),若在橢圓上存在點(diǎn)P使得k${\;}_{P{A}_{1}}$•k${\;}_{P{A}_{2}}$≥-4,則橢圓C的離心率的取值范圍是$(0,\frac{{\sqrt{3}}}{2}]$.

查看答案和解析>>

同步練習(xí)冊(cè)答案