【題目】某射擊運(yùn)動員射擊1次,命中10環(huán)、9環(huán)、8環(huán)、7環(huán)(假設(shè)命中的環(huán)數(shù)都為整數(shù))的概率分別為0.20,0.22,0.25,0.28. 計算該運(yùn)動員在1次射擊中:

(1)至少命中7環(huán)的概率;

(2)命中不足8環(huán)的概率.

【答案】(1)0.95;(2)0.33.

【解析】試題分析:

記事件射擊1次,命中k環(huán)Ak(,且),則事件Ak彼此互斥.

(1)由互斥事件的概率加法公式可得=0.95.

(2)事件射擊1次,命中不足7環(huán)是事件射擊1次,至少命中7環(huán)的對立事件,根據(jù)對立事件的概率公式, 命中不足8環(huán)B,

試題解析:

記事件射擊1次,命中k環(huán)Ak(,且),則事件Ak彼此互斥.

(1)射擊1次,至少命中7環(huán)為事件A,那么當(dāng)A10A9,A8A7之一發(fā)生時,事件A發(fā)生. 由互斥事件的概率加法公式,得

=0.20+0.22+0.25+0.28=0.95.

(2)事件射擊1次,命中不足7環(huán)是事件射擊1次,至少命中7環(huán)的對立事件,即表示事件射擊1次,命中不足7環(huán)”. 根據(jù)對立事件的概率公式, 記事件射擊1次,命中不足8環(huán)B,那么A7之一發(fā)生,B發(fā)生,而A7是互斥事件,于是答:該運(yùn)動員在1次射擊中, 至少命中7環(huán)的概率為0.95;命中不足8環(huán)的概率為0.33.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知曲線C1的參數(shù)方程為 (φ為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=sinθ.
(Ⅰ)求曲線C1的極坐標(biāo)方程及曲線C2的直角坐標(biāo)方程;
(Ⅱ)已知曲線C1 , C2交于O,A兩點(diǎn),過O點(diǎn)且垂直于OA的直線與曲線C1 , C2交于M,N兩點(diǎn),求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4sincos x+.

(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;

(2)若函數(shù)g(x)=f(x)-m區(qū)間在上有兩個不同的零點(diǎn)x1,x2,求實(shí)數(shù)m的取值范圍,并計算tan(x1+x2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)的動直線與拋物線相交于兩點(diǎn).當(dāng)直線的斜率是時,.

(1)求拋物線的方程;

(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=2sin(π-x)sin x-(sin x-cos x)2.

(1)f(x)的單調(diào)遞增區(qū)間;

(2)y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2(縱坐標(biāo)不變),再把得到的圖象向左平移個單位,得到函數(shù)y=g(x)的圖象,g的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,左頂點(diǎn)為,過原點(diǎn)且斜率不為0的直線與橢圓交于兩點(diǎn),其中點(diǎn)在第二象限,過點(diǎn)軸的垂線交于點(diǎn)

⑴求橢圓的標(biāo)準(zhǔn)方程;

⑵當(dāng)直線的斜率為時,求的面積;

⑶試比較大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小值為

⑴設(shè),求證: 上單調(diào)遞增;

⑵求證: ;

⑶求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記U={1,2,…,100},對數(shù)列{an}(n∈N*)和U的子集T,若T=,定義ST=0;若T={t1 , t2 , …,tk},定義ST= + +…+ .例如:T={1,3,66}時,ST=a1+a3+a66 . 現(xiàn)設(shè){an}(n∈N*)是公比為3的等比數(shù)列,且當(dāng)T={2,4}時,ST=30.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對任意正整數(shù)k(1≤k≤100),若T{1,2,…,k},求證:ST<ak+1;
(3)設(shè)CU,DU,SC≥SD , 求證:SC+SC∩D≥2SD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)過程中,我們通常遇到相似的問題.

(1)已知動點(diǎn)為圓 外一點(diǎn),過引圓的兩條切線. 、為切點(diǎn),若,求動點(diǎn)的軌跡方程;

(2)若動點(diǎn)為橢圓 外一點(diǎn),過引橢圓的兩條切線. 、為切點(diǎn),若,猜想動點(diǎn)的軌跡是什么,請給出證明并求出動點(diǎn)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案