若某棱錐的三視圖(單位:cm)如圖所示,則該棱錐的體積等于
 
cm3   
 
考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由三視圖可知,該幾何體為一個(gè)以俯視圖為底面的三棱柱截去同底同高的三棱錐余下的部分,分別求出棱柱和棱錐的體積,相減可得答案.
解答: 解:由三視圖可知,該幾何體為一個(gè)以俯視圖為底面的三棱柱截去同底同高的三棱錐余下的部分,
它們的底面面積S=
1
2
×3×4=6cm2,
高h(yuǎn)=5cm,
故組合體的體積V=Sh-
1
3
Sh=
2
3
×6×5=20cm3,
故答案為:20
點(diǎn)評(píng):本題考查由三視圖求幾何體的體積和表面積,根據(jù)已知的三視圖分析出幾何體的形狀是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
=(sin
π
2
x,cos
π
2
x,
b
=(sin
π
2
x,
3
sin
π
2
x),x∈R,函數(shù)f(x)=
a
•(
a
+2
b
).
(1)求f(x)在[0,1]上的最大值和最小值;
(2)將函數(shù)y=f(x)的圖象向左平移
1
6
個(gè)單位后,再將得到的圖象上的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,計(jì)算g(1)+g(2)+g(3)+…+g(2015).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A(-2,0),B(2,0),條件甲:“△ABC是以C為直角頂點(diǎn)的三角形”;條件乙:“C的坐標(biāo)是方程x2+y2=4的解”,那么甲是乙的( 。
A、必要非充分條件
B、充要條件
C、充分非必要條件
D、既不充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
cos3x
3x-3-x
的圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件
3x-y+2≥0
8x-y-4≤0
x≥0,y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為8,則ab的最大值為( 。
A、1
B、2
C、
50
21
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=lg(-x2+2x+8)的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+2,則該函數(shù)的零點(diǎn)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等腰Rt△ABC中,過(guò)直角頂點(diǎn)C作一條直線與邊AB交與點(diǎn)D,AD≥AC的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1=1+3i,z2=3+i(i為虛數(shù)單位).在復(fù)平面內(nèi),z1-z2對(duì)應(yīng)的點(diǎn)在第
 
象限.

查看答案和解析>>

同步練習(xí)冊(cè)答案