10.已知雙曲線x2-$\frac{{y}^{2}}{m}$=1的左右焦點(diǎn)分別為F1、F2,過(guò)點(diǎn)F2的直線交雙曲線右支于A,B兩點(diǎn),若△ABF1是以A為直角頂點(diǎn)的等腰三角形,則△AF1F2的面積為4-2$\sqrt{2}$.

分析 由題意可知丨AF2丨=m,丨AF1丨=2+丨AF2丨=2+m,由等腰三角形的性質(zhì)即可求得4=$\sqrt{2}$(2+m),丨AF2丨=m=2($\sqrt{2}$-1),丨AF1丨=2$\sqrt{2}$,由三角的面積公式,即可求得△AF1F2的面積.

解答 解:雙曲線x2-$\frac{{y}^{2}}{m}$=1焦點(diǎn)在x軸上,a=1,2a=2,
設(shè)丨AF2丨=m,由丨AF1丨-丨AF2丨=2a=2,
∴丨AF1丨=2+丨AF2丨=2+m,
又丨AF1丨=丨AB丨=丨AF2丨+丨BF2丨=m+丨BF2丨,
∴丨BF2丨=2,又丨BF1丨-丨BF2丨=2,
丨BF1丨=4,
根據(jù)題意丨BF1丨=$\sqrt{2}$丨AF1丨,即4=$\sqrt{2}$(2+m),m=2($\sqrt{2}$-1),
丨AF1丨=2$\sqrt{2}$,
△AF1F2的面積S=$\frac{1}{2}$•丨AF2丨•丨AF1丨=$\frac{1}{2}$×2($\sqrt{2}$-1)×2$\sqrt{2}$=4-2$\sqrt{2}$,
△AF1F2的面積4-2$\sqrt{2}$,
故答案為:4-2$\sqrt{2}$.

點(diǎn)評(píng) 本題考查雙曲線的定義的應(yīng)用,考查等腰三角形的性質(zhì),考查三角形的面積公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓E的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上,若橢圓右焦點(diǎn)到橢圓E的中心的距離是$\sqrt{2}$
(1)求橢圓E的方程;
(2)設(shè)直線l:y=kx+1(k≠0)與該橢圓交于不同的兩點(diǎn)B,C,若坐標(biāo)原點(diǎn)O到直線l的距離為$\frac{\sqrt{3}}{2}$,求△BOC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在△ABC中,a,b,c分別是三內(nèi)角A,B,C對(duì)應(yīng)的三邊,已知b2+c2=a2+bc.
(1)求角A的大小;
(2)若2sin2$\frac{B}{2}$=cosC,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=1+a($\frac{1}{2}$)x+($\frac{1}{4}$)x
(1)當(dāng)a=1時(shí),解不等式f(x)>7;
(2)若對(duì)任意x∈[0,+∞),總有f(x)≤3成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.以下四個(gè)命題中,其中真命題的個(gè)數(shù)為( 。
①?gòu)膭蛩賯鬟f的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣;
②對(duì)于命題p:?x∈R,使得x2+x+1<0.則¬p:?x∈R,均勻x2+x+1≥0
③“x<0”是“l(fā)n(x+1)<0”的充分不必要條件;
④“若x+y=0,則x,y互為相反數(shù)”的逆命題.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知a>0,曲線f(x)=2ax2-$\frac{1}{ax}$在點(diǎn)(1,f(1))處的切線的斜率為k,則當(dāng)k取最小值時(shí)a的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若0<a<2,0<b<2,則函數(shù)$f(x)=\frac{1}{3}{x^3}+\sqrt{a}{x^2}+2bx-3$存在極值的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知直線a、b和平面β,有以下四個(gè)命題:
①若a∥β,a∥b,則b∥β;
②若a?β,b∩β=B,則a與b異面;
③若a⊥b,a⊥β,則b∥β;
④若a∥b,b⊥β,則a⊥β,
其中正確命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{b-ax}{x}$+lnx(a、b∈R).
(1)試討論函數(shù)f(x)的單調(diào)區(qū)間與極值;
(2)若b>0且lnb=a-1,設(shè)g(b)=$\frac{a-1}$-m(m∈R),且函數(shù)g(x)有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案