【題目】已知函數(shù)f(x)= sin(ωx+φ)(ω>0,﹣ ≤φ< )的圖象關(guān)于直線x= 對(duì)稱,且圖象上相鄰兩個(gè)最高點(diǎn)的距離為π.
(1)求ω和φ的值;
(2)若f( )= <α< ),求cos(α+ )的值.

【答案】
(1)解:由題意可得函數(shù)f(x)的最小正周期為π,∴ =π,∴ω=2.

再根據(jù)圖象關(guān)于直線x= 對(duì)稱,可得 2× +φ=kπ+ ,k∈z.

結(jié)合﹣ ≤φ< 可得 φ=﹣


(2)解:∵f( )= <α< ),

sin(α﹣ )= ,∴sin(α﹣ )=

再根據(jù) 0<α﹣ ,

∴cos(α﹣ )= = ,

∴cos(α+ )=sinα=sin[(α﹣ )+ ]=sin(α﹣ )cos +cos(α﹣ )sin

= + =


【解析】(1)由題意可得函數(shù)f(x)的最小正周期為π 求得ω=2.再根據(jù)圖象關(guān)于直線x= 對(duì)稱,結(jié)合﹣ ≤φ< 可得 φ 的值.(2)由條件求得sin(α﹣ )= .再根據(jù)α﹣ 的范圍求得cos(α﹣ )的值,再根據(jù)cos(α+ )=sinα=sin[(α﹣ )+ ],利用兩角和的正弦公式計(jì)算求得結(jié)果.
【考點(diǎn)精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí)點(diǎn),需要掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分形幾何學(xué)是美籍法國(guó)數(shù)學(xué)家伯努瓦曼德?tīng)柌剂_特( )在20世紀(jì)70年代創(chuàng)立的一門(mén)新學(xué)科,它的創(chuàng)立為解決傳統(tǒng)眾多領(lǐng)域的難題提供了全新的思路.下圖是按照分型的規(guī)律生長(zhǎng)成的一個(gè)樹(shù)形圖,則第10行的空心圓的個(gè)數(shù)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知=(2﹣sin(2x+),﹣2),=(1,sin2x),f(x)= , (x∈[0,])
(1)求函數(shù)f(x)的值域;
(2)設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊長(zhǎng)分別為a,b,c,若f()=1,b=1,c= , 求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,已知點(diǎn)A5,-2,B7,3,且邊AC的中點(diǎn)M在y軸上,邊BC的中點(diǎn)N在x軸上,求:

(1)頂點(diǎn)C的坐標(biāo);

(2)直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), . 

(1)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;

(2)是否存在整數(shù), ,使得的解集恰好是,若存在,求出 的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:的離心率為,且過(guò)點(diǎn)P(3,2).

(1)求橢圓C`的標(biāo)準(zhǔn)方程;

(2)設(shè)與直線OP(O為坐標(biāo)原點(diǎn))平行的直線交橢圓CA,B兩點(diǎn),求證:直線PA,PB軸圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ae2x﹣be2x﹣cx(a,b,c∈R)的導(dǎo)函數(shù)f′(x)為偶函數(shù),且曲線y=f(x)在點(diǎn)(0,f(0))處的切線的斜率為4﹣c.
(1)確定a,b的值;
(2)若c=3,判斷f(x)的單調(diào)性;
(3)若f(x)有極值,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)實(shí)數(shù)x,y滿足 時(shí),1≤ax+y≤4恒成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列五個(gè)結(jié)論:

集合2,3,45,,集合,若f,則對(duì)應(yīng)關(guān)系f是從集合A到集合B的映射;

函數(shù)的定義域?yàn)?/span>,則函數(shù)的定義域也是;

存在實(shí)數(shù),使得成立;

是函數(shù)的對(duì)稱軸方程;

曲線和直線的公共點(diǎn)個(gè)數(shù)為m,則m不可能為1

其中正確的有______寫(xiě)出所有正確的序號(hào)

查看答案和解析>>

同步練習(xí)冊(cè)答案