(1)已知|a|<1,|b|<1,求證:||>1;

(2)求實數(shù)λ的取值范圍,使不等式||>1對滿足|a|<1,|b|<1的一切實數(shù)a、b恒成立;

(3)已知|a|<1,若||<1,求b的取值范圍.

(1)證明:|1-ab|2-|a-b|2=1+a2b2-a2-b2=(a2-1)(b2-1).

∵|a|<1,|b|<1,∴a2-1<0,b2-1<0.

∴|1-ab|2-|a-b|2>0.

∴|1-ab|>|a-b|,>1.

(2)解析:∵||>1|1-abλ|2-|aλ-b|2=(a2λ2-1)(b2-1)>0,

∵b2<1,∴a2λ2-1<0對于任意滿足|a|<1的a恒成立.

當a=0時,a2λ2-1<0成立;

當a≠0時,要使λ2對于任意滿足|a|<1的a恒成立,而>1,

∴|λ|≤1.故-1≤λ≤1.

(3)解析:||<1()2<1(a+b)2<(1+ab)2a2+b2-1-a2b2<0(a2-1)(b2-1)<0.

∵|a|<1,∴a2<1.∴1-b2>0,即-1<b<1.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知a>1,f(x)=a x2+2x,則f(x)<1成立的充要條件是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•泉州模擬)已知a<b,則在下列的一段推理過程中,錯誤的推理步驟有
.(填上所有錯誤步驟的序號)
∵a<b,∴a+a<b+a,即2a<b+a,…①
∴2a-2b<b+a-2b,即2(a-b)<a-b,…②
∴2(a-b)•(a-b)<(a-b)•(a-b),即2(a-b)2<(a-b)2,…③
∵(a-b)2>0,∴可證得 2<1.…④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•松江區(qū)二模)已知雙曲線C的中心在原點,D(1,0)是它的一個頂點,
d
=(1,
2
)
是它的一條漸近線的一個方向向量.
(1)求雙曲線C的方程;
(2)若過點(-3,0)任意作一條直線與雙曲線C交于A,B兩點 (A,B都不同于點D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點,M,N為雙曲線Γ上的兩點(都不同于點E),且EM⊥EN,那么直線MN是否過定點?若是,請求出此定點的坐標;若不是,說明理由.然后在以下三個情形中選擇一個,寫出類似結(jié)論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點;
情形二:拋物線y2=2px(p>0)及它的頂點;
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(1,f'(1))是函數(shù)y=f(x)的導函數(shù)圖象上的一點,點B為(x,ln(x+1)),向量
a
=(1,1)
,令f(x)=
AB
a

(1)求函數(shù)y=f(x)的表達式;
(2)若x>0,證明:f(x)>
2x2+3x-10
2(x+2)

(3)若x∈[-1,1]時,不等式
1
2
x2≤f(x2)+m2-
9
2
m-3
都恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b∈R,且滿足
2a-b-2≤0
a-2b+2≥0
a+b-1≥0
,則S=
2a+b
a+b
的取值范圍為( 。

查看答案和解析>>

同步練習冊答案