已知函數(shù)f(x)=
1
3
x3-
1
2
ax2+
9
2
(a>0)

(1)當(dāng)a=3時(shí),求f(x)的單調(diào)遞增區(qū)間;
(II)求證:曲線y=f(x)總有斜率為a的切線;
(III)若存在x∈[-1,2],使f(x)<0成立,求a的取值范圍.
(Ⅰ)當(dāng)a=3時(shí),
1
3
x3-
3
2
x2+
9
2
,
f′(x)=x2-3x,
令f′(x)=x2-3x>0解得x<0或x>3.
所以f(x)的單調(diào)遞增區(qū)間(-∞,0),(3,+∞).
(II)f′(x)=x2-ax,
令f′(x)=x2-ax=a,即x2-ax-a=0,
因?yàn)閍>0,
所以△=a2+4a>0恒成立,
所以方程x2-ax-a=0對(duì)任意正數(shù)a都有解,
所以曲線y=f(x)總有斜率為a的切線;
由(II)知,f′(x)=x2-ax,
令f′(x)=x2-ax=0得x1=0或x2=a,
因?yàn)閍>0,所以當(dāng)0<a<2時(shí),x,f′(x),f(x)的變化情況如下表:

因?yàn)?span >
25-3a
6
>0,
27-a3
6
>0,
所以,對(duì)應(yīng)任意x∈[-1,2],f(x)>0,即此時(shí)不存在x∈[-1,2],使f(x)<0成立,
當(dāng)a≥2時(shí),x,f′(x),f(x)的變化情況如下表:

因?yàn)?span >
25-3a
6
-
43-12a
6
=
3a-6
2
≥0,
所以函數(shù)f(x)在[-1,2]上的最小值是
43-12a
6

因?yàn)榇嬖趚∈[-1,2],使f(x)<0成立,
所以
43-12a
6
<0
,
所以a
43
12

所以a 的取值范圍為(
43
12
,+∞)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f1(x)=
1
2
x2,f2(x)=alnx(其中a>0).
(Ⅰ)求函數(shù)f(x)=f1(x)•f2(x)的極值;
(Ⅱ)若函數(shù)g(x)=f1(x)-f2(x)+(a-1)x在區(qū)間(
1
e
,e)內(nèi)有兩個(gè)零點(diǎn),求正實(shí)數(shù)a的取值范圍;
(Ⅲ)求證:當(dāng)x>0時(shí),1nx+
3
4x2
-
1
ex
>0.(說(shuō)明:e是自然對(duì)數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)5(x)=x3+bx2+bx+c(實(shí)數(shù)b,b,c為常數(shù))的圖象過(guò)原點(diǎn),且在x=1處的切線為直線y=-
1
2

(1)求函數(shù)5(x)的解析式;
(2)若常數(shù)口>0,求函數(shù)5(x)在區(qū)間[-口,口]上的最5值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某化工企業(yè)生產(chǎn)某種產(chǎn)品,生產(chǎn)每件產(chǎn)品的成本為3元,根據(jù)市場(chǎng)調(diào)查,預(yù)計(jì)每件產(chǎn)品的出廠價(jià)為x元(7≤x≤10)時(shí),一年的產(chǎn)量為(11-x)2萬(wàn)件;若該企業(yè)所生產(chǎn)的產(chǎn)品能全部銷售,則稱該企業(yè)正常生產(chǎn);但為了保護(hù)環(huán)境,用于污染治理的費(fèi)用與產(chǎn)量成正比,比例系數(shù)為常數(shù)a(1≤a≤3).
(Ⅰ)求該企業(yè)正常生產(chǎn)一年的利潤(rùn)L(x)與出廠價(jià)x的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)每件產(chǎn)品的出廠價(jià)定為多少元時(shí),企業(yè)一年的利潤(rùn)最大,并求最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函f(x)=x3+ax2+bx+5,若x=
2
3
,y=f(x)有極值,且曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率為3.
(1)求函數(shù)f(x)的解析式;
(2)求y=f(x)在[-4,1]上的最大值和最小值.
(3)函數(shù)y=f(x)-m有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=ax2+ln(x+1).
(1)求函數(shù)g(x)=f(x)-ax2-x的單調(diào)區(qū)間及最大值;
(2)當(dāng)x∈[0,+∞)時(shí),不等式f(x)≤x恒成立,求實(shí)數(shù)a的取值范圍.
(3)求證:(1+
1
22
)(1+
1
3^
)(1+
1
42
)(1+
1
52
)…(1+
1
n2
)<e

參考導(dǎo)數(shù)公式:(ln(x+1))=
1
x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=alnx+x2(a為實(shí)常數(shù)).
(1)若a=-2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);
(2)求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;
(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)a=則二項(xiàng)式的常數(shù)項(xiàng)是       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

        (用數(shù)字作答).

查看答案和解析>>

同步練習(xí)冊(cè)答案