A. | 1+2 | B. | 1+2+3+4 | C. | 1+2+3 | D. | 1+2+3+4+5+6+7+8 |
分析 當n=2時,22=4,而等式左邊起始為1的連續(xù)的正整數(shù)的和,由此易得答案
解答 解:用數(shù)學歸納法證明等式1+2+3+…+2n=$\frac{{{2^n}({{2^n}+1})}}{2}$(n≥2,n∈N*)的過程中,
當n=2時,22=4,
而等式左邊起始為1的連續(xù)的正整數(shù)的和,
故n=2時,等式左邊的項為:1+2+3+4
故選:B.
點評 本題考查的知識點是數(shù)學歸納法的步驟,在數(shù)學歸納法中,第一步是論證n=2時結(jié)論是否成立,此時一定要分析等式兩邊的項,不能多寫也不能少寫,否則會引起答案的錯誤.解此類問題時,注意n的取值范圍.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{{2}^{k}+1}$ | B. | $\frac{1}{{2}^{k+1}}$ | ||
C. | $\frac{1}{{2}^{k}+1}$+$\frac{1}{{2}^{k}+2}$+…+$\frac{1}{{2}^{k+1}}$ | D. | $\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0] | B. | (-∞,1) | C. | (0,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x3 | B. | y=cosx | C. | y=ln$\frac{1-x}{1+x}$ | D. | y=ex |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com