分析 運(yùn)用數(shù)學(xué)歸納法證明.首先驗(yàn)證n=3時(shí),不等式成立;假設(shè)n=k,不等式成立,證明n=k+1,不等式也成立,注意運(yùn)用分析法證明,即可得證.
解答 證明:運(yùn)用數(shù)學(xué)歸納法證明.
當(dāng)n=3時(shí),不等式左邊=1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$>2,右邊=2,顯然成立;
假設(shè)k∈N*,k>2時(shí),n=k時(shí),1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{k}}$>$\sqrt{k+1}$成立,
當(dāng)n=k+1時(shí),1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{k}}$+$\frac{1}{\sqrt{k+1}}$>$\sqrt{k+1}$+$\frac{1}{\sqrt{k+1}}$,
要證$\sqrt{k+1}$+$\frac{1}{\sqrt{k+1}}$>$\sqrt{k+2}$,
即證k+2>$\sqrt{(k+1)(k+2)}$,
平方可得k2+4k+4>k2+3k+2,
即為k+2>0顯然成立.
即n=k+1時(shí),不等式也成立.
綜上可得,n∈N*,n>2時(shí),1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$>$\sqrt{n+1}$成立.
點(diǎn)評(píng) 本題考查不等式的證明,注意運(yùn)用數(shù)學(xué)歸納法證明,考查運(yùn)算和推理能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | -3 | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“若x=1,則x2=1”的否定為:“若x=1,則x2≠1” | |
B. | 已知y=f(x)是上的可導(dǎo)函數(shù),則“f′(x0)=0”是“x0是函數(shù)y=f(x)的極值點(diǎn)”的充分必要條件 | |
C. | 命題“存在x∈R,使得x2+x+1<0”的否定是:“對(duì)任意x∈R,均有x2+x+1<0” | |
D. | 命題“角α的終邊在第一象限,則α是銳角”的逆否命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | $2\sqrt{2}$ | C. | 8 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|x≠±2} | B. | (-2,2) | C. | (-∞,-2)∪(2,+∞) | D. | (-∞,-2)∪(0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com