2.定義在R上的偶函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),對定義域內(nèi)的任意x,都有2f(x)+xf'(x)<2成立,則使得x2f(x)-4f(2)<x2-4成立的x的范圍為( 。
A.{x|x≠±2}B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)

分析 根據(jù)已知構(gòu)造合適的函數(shù),對函數(shù)求導(dǎo),根據(jù)函數(shù)的單調(diào)性,求出函數(shù)的取值范圍,并根據(jù)偶函數(shù)的性質(zhì)的對稱性,進(jìn)行求解即可.

解答 解:當(dāng)x>0時(shí),由2f(x)+xf'(x)<2得2f(x)+xf′(x)-2<0可知:兩邊同乘以x得:
2xf(x)-x2f′(x)-2x<0
設(shè)g(x)=x2f(x)-x2
則g′(x)=2xf(x)+x2f′(x)-2x<0,恒成立:
∴g(x)在(0,+∞)單調(diào)遞減,
由x2f(x)-4f(2)<x2-4
∴x2f(x)-x2<4f(2)-4
即g(x)<g(2),
∵f(x)是偶函數(shù),
∴g(x)=x2f(x)-x2也是偶函數(shù),
則不等式g(x)<g(2)等價(jià)為g(|x|)<g(2),
即|x|>2;
則x>2或x<-2,即實(shí)數(shù)x的取值范圍為(-∞,-2)∪(2,+∞),
故選:C

點(diǎn)評 本題主要考查不等式的求解,主要根據(jù)已知構(gòu)造合適的函數(shù),函數(shù)求導(dǎo),并應(yīng)用導(dǎo)數(shù)法判斷函數(shù)的單調(diào)性,偶函數(shù)的性質(zhì),綜合性較強(qiáng),有一定的難度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.命題“三角形的任意兩邊之和大于第三邊”.類比上述結(jié)論,你能得到:三棱錐任意三個(gè)面的面積之和大于第四個(gè)面的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知n∈N*,n>2時(shí),求證:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$>$\sqrt{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)a,b,c,d都是正數(shù),求證:(ab+cd)(ac+bd)≥4abcd.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系中,已知圓C1:(x+2)2+y2=m2和圓C2:(x-2)2+y2=4-m2,其中m∈R,且0<m<2.
(I)若m=1,求直線x-$\sqrt{3}$y+1=0被圓C1截得的弦長;
(Ⅱ)過點(diǎn)P(0,b)作直線l,使圓C1和圓C2在l的兩側(cè),且均與1相切,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知x、y滿足約束條件$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+3y≤6\end{array}\right.$,若z=log2(2x+y+2)的最大值為( 。
A.8B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在如圖所示多面體中,平面AEFD⊥平面BEFC,四邊形AEFD是邊長為2的正方形,EF∥BC,且BE=CF=$\frac{1}{2}$BC=2,G是BC的中點(diǎn).
(1)求證:EG⊥平面BDF;                        
(2)求此多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=2sin(ωx+$\frac{π}{6}}$)(ω>0)與函數(shù)g(x)=cos(2x+φ)(|φ|<$\frac{π}{2}}$)的對稱軸完全相同,則φ=-$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)命題p:x2-5x+6≤0;命題q:(x-m)(x-m-2)≤0,若¬p是¬q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案