【題目】(選修4﹣4:坐標(biāo)系與參數(shù)方程)
已知直線l過點(diǎn)P(﹣1,2),且傾斜角為 ,圓方程為 .
(1)求直線l的參數(shù)方程;
(2)設(shè)直線l與圓交與M、N兩點(diǎn),求|PM||PN|的值.
【答案】
(1)解:直線l過點(diǎn)P(﹣1,2),且傾斜角為 ,故直線l的參數(shù)方程為 ,即 為參數(shù))
(2)解:圓方程 =2( ﹣ ),即ρ2=2( ﹣ )=ρ cosθ﹣ ,
化為直角坐標(biāo)方程為 + =1.
把 代入 + =1化簡(jiǎn)可得 t2+(3+2 )t+ =0.
設(shè)此一元二次方程式的兩個(gè)根分別為 t1和 t2,則由根與系數(shù)的關(guān)系可得 t1t2= .
由題意可得|PM||PN|=|t1||t2|=|t1t2|=
【解析】(1)由題意可得,直線l的參數(shù)方程為 ,化簡(jiǎn)可得結(jié)果.(2)把圓的極坐標(biāo)方程化為直角坐標(biāo)方程可得 t2+(3+2 )t+ =0,由根與系數(shù)的關(guān)系可得 t1t2= ,再由|PM||PN|=|t1||t2|=|t1t2|求得結(jié)果.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線的參數(shù)方程的相關(guān)知識(shí),掌握經(jīng)過點(diǎn),傾斜角為的直線的參數(shù)方程可表示為(為參數(shù)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C的對(duì)應(yīng)邊分別為a、b、c,若向量 =(a﹣b,1)與向量 =(a﹣c,2)共線,且∠A=120°.
(1)a:b:c;
(2)若△ABC外接圓的半徑為14,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小圖給出了某池塘中的浮萍蔓延的面積與時(shí)間(月)的關(guān)系的散點(diǎn)圖.有以下敘述:
①與函數(shù)相比,函數(shù)作為近似刻畫與的函數(shù)關(guān)系的模型更好;
②按圖中數(shù)據(jù)顯現(xiàn)出的趨勢(shì),第個(gè)月時(shí),浮萍的面積就會(huì)超過;
③按圖中數(shù)據(jù)顯現(xiàn)出的趨勢(shì),浮萍每個(gè)月增加的面積約是上個(gè)月增加面積的兩倍;
④按圖中數(shù)據(jù)顯現(xiàn)出的趨勢(shì),浮萍從月的蔓延到至少需要經(jīng)過個(gè)月.
其中正確的說法有__________(填序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)若點(diǎn),在中按均勻分布出現(xiàn).
(1)點(diǎn)橫、縱坐標(biāo)分別由擲骰子確定,第一次確定橫坐標(biāo),第二次確定縱坐標(biāo),則點(diǎn)落在上述區(qū)域的概率?
(2)試求方程有兩個(gè)實(shí)數(shù)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點(diǎn)的中心
C. 若該大學(xué)某女生身高增加1 cm,則其體重約增加0.85 kg
D. 若該大學(xué)某女生身高為170 cm,則可斷定其體重必為58.79 kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=kax﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga(x+k)的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為及時(shí)了解適齡公務(wù)員對(duì)開放生育二胎政策的態(tài)度,某部門隨機(jī)調(diào)查了90位30歲到40歲的公務(wù)員,得到情況如表:
(1)完成表格,并判斷是否有99%以上的把握認(rèn)為“生二胎意愿與性別有關(guān)”,并說明理由;
(2)現(xiàn)把以上頻率當(dāng)作概率,若從社會(huì)上隨機(jī)獨(dú)立抽取三位30歲到40歲的男公務(wù)員訪問,求這三人中至少有一人有意愿生二胎的概率.
(3)已知15位有意愿生二胎的女性公務(wù)員中有兩位來自省婦聯(lián),該部門打算從這15位有意愿生二胎的女性公務(wù)員中隨機(jī)邀請(qǐng)兩位來參加座談,設(shè)邀請(qǐng)的2人中來自省女聯(lián)的人數(shù)為X,求X的公布列及數(shù)學(xué)期望E(X).
男性公務(wù)員 | 女性公務(wù)員 | 總計(jì) | |
有意愿生二胎 | 30 | 15 | |
無意愿生二胎 | 20 | 25 | |
總計(jì) |
附:
P(k2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程為 (α為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),Ox軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程
(2)若直線l的極坐標(biāo)方程為ρ(sinθ+cosθ)=1,求直線l被曲線C截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬元)對(duì)年銷售量(單位:噸)的影響,對(duì)近六年的年宣傳費(fèi)和年銷售量()的數(shù)據(jù)作了初步統(tǒng)計(jì),得到如下數(shù)據(jù):
年份() | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年宣傳費(fèi)(萬元) | 23 | 25 | 27 | 29 | 32 | 35 |
年銷售量(噸) | 11 | 21 | 24 | 66 | 115 | 325 |
(1)根據(jù)散點(diǎn)圖判斷與,哪一個(gè)更適合作為年銷售量(噸)與關(guān)于宣傳費(fèi)(萬元)的回歸方程類型;
(2)規(guī)定當(dāng)產(chǎn)品的年銷售量(噸)與年宣傳費(fèi)(萬元)的比值大于1時(shí),認(rèn)為該年效益良好,現(xiàn)從這6年中任選3年,記其中選到效益良好的數(shù)量為,試求的所有取值情況及對(duì)應(yīng)的概率;
(3)根據(jù)頻率分布直方圖中求出樣本數(shù)據(jù)平均數(shù)的思想方法,求的平均數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com