【題目】如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分別是A1C1,BC的中點(diǎn).
(1)求證:AB⊥平面B1BCC1; 平面ABE⊥平面B1BCC1;
(2)求證:C1F∥平面ABE;
(3)求三棱錐E-ABC的體積.
【答案】(1)詳見解析(2)詳見解析(3)
【解析】
試題分析:(1)由,可證明AB⊥B1BCC1,進(jìn)而由面面垂直的判定定理可得平面ABE⊥平面B1BCC1;(2)證明C1F∥平面ABE,只需證明四邊形FGEC1為平行四邊形,可得C1F∥EG;(3)利用VE-ABC=S△ABCAA1,可求三棱錐E-ABC的體積
試題解析:(1)因?yàn)樵谌庵?/span>中,底面,所以,又因?yàn)?/span>,所以平面,所以平面平面。 ......4分
(2)取的中點(diǎn),連接
因?yàn)?/span>分別是、、的中點(diǎn),所以,且,。因?yàn)?/span>且,所以且,所以四邊形為平行四邊形,所以。又因?yàn)?/span>在平面上,且不在平面上,所以平面。 ......8分
(3)因?yàn)?/span>,,,所以,所以三棱錐的體積。 ......12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=-3x2+a(6-a)x+6.
(1)解關(guān)于a的不等式f(1)>0;
(2)若不等式f(x)>b的解集為(-1,3),求實(shí)數(shù)a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有外形相同的球分裝三個(gè)盒子,每盒10個(gè).其中,第一個(gè)盒子中7個(gè)球標(biāo)有字母A、3個(gè)球標(biāo)有字母B;第二個(gè)盒子中有紅球和白球各5個(gè);第三個(gè)盒子中則有紅球8個(gè),白球2個(gè).試驗(yàn)按如下規(guī)則進(jìn)行:先在第一號(hào)盒子中任取一球,若取得標(biāo)有字母A的球,則在第二號(hào)盒子中任取一個(gè)球;若第一次取得標(biāo)有字母B的球,則在第三號(hào)盒子中任取一個(gè)球.如果第二次取出的是紅球,則稱試驗(yàn)成功,那么試驗(yàn)成功的概率為( )
A.0.59 B.0.54 C.0.8 D.0.15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)微信同程旅游的調(diào)查統(tǒng)計(jì)顯示,參與網(wǎng)上購票的1000位購票者的年齡(單位:歲)情況如圖所示.
(1)已知中間三個(gè)年齡段的網(wǎng)上購票人數(shù)成等差數(shù)列,求的值;
(2)為鼓勵(lì)大家網(wǎng)上購票,該平臺(tái)常采用購票就發(fā)放酒店入住代金券的方法進(jìn)行促銷,具體做法如下:
年齡在歲的每人發(fā)放20元,其余年齡段的每人發(fā)放50元,先按發(fā)放代金券的金額采用分層抽樣的方式從參與調(diào)查的1000位網(wǎng)上購票者中抽取5人,并在這5人中隨機(jī)抽取3人進(jìn)行回訪調(diào)查,求此3人獲得代金券的金額總和為90元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,以Ox軸為始邊作兩個(gè)銳角α,β,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知A,B的橫坐標(biāo)分別為,.求:
(1)tan(α+β)的值;
(2)α+2β的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對(duì)他們的射箭水平進(jìn)行測(cè)試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計(jì)算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標(biāo)準(zhǔn)差;
(2)比較兩個(gè)人的成績,然后決定選擇哪名學(xué)生參加射箭比賽.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足f(x+y)=f(x)+f(y),當(dāng)x>0時(shí),有,且f(1)=﹣2
(1)求f(0)及f(﹣1)的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并利用定義加以證明;
(3)求解不等式f(2x)﹣f(x2+3x)<4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的值域;
(2)已知,函數(shù),若函數(shù)在區(qū)間上是增函數(shù),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線的焦點(diǎn)的直線交拋物線于, 兩點(diǎn), 為坐標(biāo)原點(diǎn),若,則△的面積為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com