8.已知集合M={x∈R|$\frac{1-x}{x}≤0$},N={x∈R|y=ln(x-1)},則M∩N(  )
A.B.{x|x≥1}C.{x|x>1}D.{x|x≥1或x<0}

分析 求出M中x的范圍確定出M,求出N中x的范圍確定出N,找出兩集合的交集即可.

解答 解:由M中$\frac{1-x}{x}≤0$,解得x<0或x≥1,得到M={x|x<0或x≥1},
由N中y=ln(x-1),得到x-1>0,
解得:x>1,即N={x|x>1},
則M∩N={x|x>1},
故選:C.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.在平面直角坐標系Oxy中,若雙曲線$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{{m}^{2}+4}$=1的焦距為8,則m的值為( 。
A.3B.3 或-4C.-1D.6 或10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知圓O:x2+y2=25和圓C:x2+y2-4x-2y-20=0相交于A、B兩點,求公共弦AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知定義域為R的函數(shù)f(x)=$\frac{1-2^x}{a+2^{x+1}}$是奇函數(shù),
(1)求a的值;
(2)試判斷f(x)在(-∞,+∞)的單調性,并請你用函數(shù)單調性的定義給予證明;
(3)若對任意的t∈R,不等式f(mt2+1)+f(1-mt)<0恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=sinωx+cosωx(ω>0),x∈R,若函數(shù)f(x)在區(qū)間$({-\frac{ω}{4},\frac{ω}{4}})$內單調遞增,且函數(shù)f(x)的圖象關于直線$x=\frac{ω}{4}$對稱,則ω的值$\sqrt{π}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.給出下列命題:
①函數(shù)f(x)=4cos(2x+$\frac{π}{3}$)的一個對稱中心為(-$\frac{5π}{12}$,0);
②若α,β為第一象限角,且α>β,則tanα>tanβ;
③若|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$|,則存在實數(shù)λ,使得$\overrightarrow$=λ$\overrightarrow{a}$;
④在△ABC中,內角A,B,C所對的邊分別為a,b,c,若a=40,b=20,B=25°,則△ABC必有兩解.
⑤函數(shù)y=sin2x的圖象向左平移$\frac{π}{4}$個單位長度,得到y(tǒng)=sin(2x+$\frac{π}{4}$)的圖象.
其中正確命題的序號是①③④ (把你認為正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在平面直角坐標系xoy中,已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線方程為$y=\sqrt{2}x$,則該雙曲線的離心率為( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知集合U={1,2,3,4},A={1,2},則∁UA等于( 。
A.{1,2}B.{3,4}C.{2,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.復數(shù)$z=\frac{3-2i}{(2+i)(1-i)}$在復平面內的對應點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習冊答案