10.已知函數(shù)f(x)=$\sqrt{3-x}$+$\frac{1}{{\sqrt{x+2}}}$的定義域?yàn)榧螦,集合B={x|x<a}.
(I)求集合A
(II)若全集U={x|x≤4},a=-1,求∁UA和A∩(∁UB).

分析 (1)根據(jù)負(fù)數(shù)沒有平方根及分母不為0求出f(x)的定義域,進(jìn)而確定出A;
(2)根據(jù)全集U及A,求出A的補(bǔ)集,找出A與B補(bǔ)集的交集即可.

解答 解:(Ⅰ)由題意知:$\left\{{\begin{array}{l}{3-x≥0}\\{x+2>0}\end{array}}\right.$,
解得:-2<x≤3,
∴A={x|-2<x≤3};
(Ⅱ)當(dāng)a=-1時(shí),B={x|x<-1},
∵全集U={x|x≤4},A={x|-2<x≤3},
∴∁UA={x|x≤-2或3<x≤4},∁UB={x|-1≤x≤4},
∴A∩(∁UB)={x|-2<x≤3}∩{x|-1<x≤4}={x|-1<x≤3}.

點(diǎn)評(píng) 此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=-$\frac{1}{2}$x2+x在定義域內(nèi)存在區(qū)間[m,n]上的值域?yàn)閇3m,3n],則m+n的值是( 。
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示是一個(gè)長方體截去一個(gè)角得到的幾何體的直觀圖及正視圖和側(cè)視圖(單位:cm).
(1)畫出該多面體的俯視圖,并標(biāo)上相應(yīng)的數(shù)據(jù);
(2)設(shè)M為AB上的一點(diǎn),N為BB’中點(diǎn),且AM=4,證明:平面GEF∥平面DMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,又I為△ABC的內(nèi)心,且b-c=4,b+c-a=6,則$\overrightarrow{AI}$×$\overrightarrow{BC}$=( 。
A.6B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2cos2x+2$\sqrt{3}$sinxcosx+a的最大值為2.
(1)求a的值,并求函數(shù)f(x)圖象的對(duì)稱軸方程;
(2)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{12}$個(gè)單位,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)在區(qū)間[$\frac{π}{6}$,$\frac{π}{3}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)z=i(1-$\frac{1}{i}$)在復(fù)平面上對(duì)應(yīng)的點(diǎn)Z位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q>0,S2=2a2-2,S3=a4-2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{n}{{a}_{n}}$,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且$\frac{sinB}{sinA+sinC}+\frac{sinC}{sinA+sinB}$=1.
(1)求角A;
(2)若a=4$\sqrt{3}$,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)a<b<0,則下列不等式中恒成立的是(  )
A.a2<b2B.$\frac{1}{a}>\frac{1}$C.ab<b2D.3a<4b

查看答案和解析>>

同步練習(xí)冊(cè)答案