【題目】過雙曲線 ﹣ =1(a>0,b>0)的右焦點(diǎn)F作漸近線的垂線,設(shè)垂足為P(P為第一象限的點(diǎn)),延長FP交拋物線y2=2px(p>0)于點(diǎn)Q,其中該雙曲線與拋物線有一個(gè)共同的焦點(diǎn),若 = ( + ),則雙曲線的離心率的平方為( )
A.
B.
C.
+1
D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人同時(shí)生產(chǎn)內(nèi)徑為的一種零件,為了對兩人的生產(chǎn)質(zhì)量進(jìn)行評比,從他們生產(chǎn)的零件中各抽出 5 件(單位: ) ,
甲:25.44,25.43, 25.41,25.39,25.38
乙:25.41,25.42, 25.41,25.39,25.42.
從生產(chǎn)的零件內(nèi)徑的尺寸看、誰生產(chǎn)的零件質(zhì)量較高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=(x+1)lnx﹣a(x﹣1).
(1)若函數(shù)f(x)在x=e處的切線與y軸相交于點(diǎn)(0,2﹣e),求a的值;
(2)當(dāng)1<x<2時(shí),求證: > ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率是,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為,直線與橢圓交于兩點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)實(shí)數(shù)變化時(shí),求的最大值;
(3)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列個(gè)結(jié)論:
①棱長均相等的棱錐一定不是六棱錐;
②函數(shù)既不是奇函數(shù)又不是偶函數(shù);
③若函數(shù)的值域?yàn)?/span>,則實(shí)數(shù)的取值范圍是;
④若函數(shù)滿足條件,則的最小值為.
其中正確的結(jié)論的序號(hào)是:______. (寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(且).
(1)當(dāng)時(shí),函數(shù)恒有意義,求實(shí)數(shù)的取值范圍;
(2)是否存在這樣的實(shí)數(shù),使得函數(shù)在區(qū)間上為減函數(shù),并且最大值為1?如果存在,試求出的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},a1=1,且an﹣1﹣an﹣1an﹣an=0(n≥2,n∈N*),記bn=a2n﹣1a2n+1 , 數(shù)列{bn}的前n項(xiàng)和為Tn , 則滿足不等式Tn< 成立的最大正整數(shù)n為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線: .
(1)已知直線與雙曲線交于不同的兩點(diǎn),且,求實(shí)數(shù)的值;
(2)過點(diǎn)作直線與雙曲線交于不同的兩點(diǎn),若弦恰被點(diǎn)平分,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】遂寧市觀音湖港口船舶?康姆桨甘窍鹊较韧#
(1)若甲乙兩艘船同時(shí)到達(dá)港口,雙方約定各派一名代表從1,2,3,4,5中各隨機(jī)選一個(gè)數(shù)(甲、乙選取的數(shù)互不影響),若兩數(shù)之和為偶數(shù),則甲先?浚蝗魞蓴(shù)之和為奇數(shù),則乙先?,這種規(guī)則是否公平?請說明理由.
(2)根據(jù)以往經(jīng)驗(yàn),甲船將于早上7:00~8:00到達(dá),乙船將于早上7:30~8:30到達(dá),請求出甲船先?康母怕
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com