【題目】已知數(shù)列{an},a1=1,且an﹣1﹣an﹣1an﹣an=0(n≥2,n∈N*),記bn=a2n﹣1a2n+1 , 數(shù)列{bn}的前n項(xiàng)和為Tn , 則滿足不等式Tn< 成立的最大正整數(shù)n為 .
【答案】7
【解析】解:∵an﹣1﹣an﹣1an﹣an=0,
∴ ﹣ =1,
∵a1=1,
∴ =1,
∴數(shù)列{ }是以1為首項(xiàng),1為公差的等差數(shù)列,
∴ =1+n﹣1=n,
即an= ,
當(dāng)n=1是成立,
∴bn=a2n﹣1a2n+1= = ( ﹣ ),
∴Tn=b1+b2+…+bn= (1﹣ + ﹣ +…+ ﹣ )= (1﹣ )= ,
∵Tn< ,
∴ (1﹣ )< ,
∴2n+1<17,
即n<8,
所以答案是:7.
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一動(dòng)點(diǎn), 到點(diǎn)的距離減去它到軸距離的差都是.
()求動(dòng)點(diǎn)的軌跡方程.
()設(shè)動(dòng)點(diǎn)的軌跡為,已知定點(diǎn)、,直線、與軌跡的另一個(gè)交點(diǎn)分別為、.
(i)點(diǎn)能否為線段的中點(diǎn),若能,求出直線的方程,若不能,說(shuō)明理由.
(ii)求證:直線過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】統(tǒng)計(jì)表明,家庭的月理財(cái)投入(單位:千元)與月收入(單位:千元)之間具有線性相關(guān)關(guān)系.某銀行隨機(jī)抽取5個(gè)家庭,獲得第()個(gè)家庭的月理財(cái)投入與月收入的數(shù)據(jù)資料,經(jīng)計(jì)算得.
(1)求關(guān)于的回歸方程;
(2)判斷與之間是正相關(guān)還是負(fù)相關(guān);
(3)若某家庭月理財(cái)投入為5千元,預(yù)測(cè)該家庭的月收入.
附:回歸方程的斜率與截距的最小二乘估計(jì)公式分別為:
,其中為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)雙曲線 ﹣ =1(a>0,b>0)的右焦點(diǎn)F作漸近線的垂線,設(shè)垂足為P(P為第一象限的點(diǎn)),延長(zhǎng)FP交拋物線y2=2px(p>0)于點(diǎn)Q,其中該雙曲線與拋物線有一個(gè)共同的焦點(diǎn),若 = ( + ),則雙曲線的離心率的平方為( )
A.
B.
C.
+1
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) , ,
⑴ 若有零點(diǎn),求 m 的取值范圍;
⑵ 確定 m 的取值范圍,使得有兩個(gè)相異實(shí)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=x2+(a+1)x+a2(a∈R),若f(x)能表示成一個(gè)奇函數(shù)g(x)和一個(gè)偶函數(shù)h(x)的和.
(1)求g(x)和h(x)的解析式;
(2)若f(x)和g(x)在區(qū)間(-∞,(a+1)2]上都是減函數(shù),求f(1)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1 , F2分別為橢圓C: + =1(a>b>0)的左、右兩個(gè)焦點(diǎn),橢圓上點(diǎn)M( , )到F1、F2兩點(diǎn)的距離之和等于4.
(1)求橢圓C的方程;
(2)已知過(guò)右焦點(diǎn)且垂直于x軸的直線與橢圓交于點(diǎn)N(點(diǎn)N在第一象限),E,F(xiàn)是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果kEN+KFN=0,證明直線EF的斜率為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),我國(guó)許多省市霧霾天氣頻發(fā),為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),某市面向全市征召名義務(wù)宣傳志愿者,成立環(huán)境保護(hù)宣傳組織,現(xiàn)把該組織的成員按年齡分成組第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示,已知第組有人.
(1)求該組織的人數(shù);
(2)若在第組中用分層抽樣的方法抽取名志愿者參加某社區(qū)的宣傳活動(dòng),應(yīng)從第組各抽取多少名志愿者?
(3)在(2)的條件下,該組織決定在這名志愿者中隨機(jī)抽取名志愿者介紹宣傳經(jīng)驗(yàn),求第組至少有名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)方式為:弧田面積= (弦×矢+矢2),弧田(如圖)由圓弧和其所對(duì)弦所圍成,公式中“弦”指圓弧所對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差,現(xiàn)有圓心角為 ,半徑等于4米的弧田,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積約是( )
A.6平方米
B.9平方米
C.12平方米
D.15平方米
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com