【題目】已知橢圓的左、右兩個(gè)焦點(diǎn)分別為,離心率,短軸長為2.
(1)求橢圓的方程;
(2)點(diǎn)為橢圓上的一動(dòng)點(diǎn)(非長軸端點(diǎn)),的延長線與橢圓交于點(diǎn), 的延長線與橢圓交于點(diǎn),求面積的最大值.
【答案】(1)橢圓的標(biāo)準(zhǔn)方程為 (2)面積的最大值為
【解析】試題分析:(1) 由題意得,再由, 標(biāo)準(zhǔn)方程為;(2)①當(dāng)的斜率不存在時(shí),不妨取
; ②當(dāng)的斜率存在時(shí),設(shè)的方程為,聯(lián)立方程組
,又直線的距離 點(diǎn)到直線的距離為 面積的最大值為.
試題解析:(1) 由題意得,解得,
∵,∴, ,
故橢圓的標(biāo)準(zhǔn)方程為
(2)①當(dāng)直線的斜率不存在時(shí),不妨取
,
故;
②當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為 ,
聯(lián)立方程組,
化簡得,
設(shè)
點(diǎn)到直線的距離
因?yàn)?/span>是線段的中點(diǎn),所以點(diǎn)到直線的距離為,
∴
綜上, 面積的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個(gè)命題:
①已知直線、和平面,若,,則;
②平面上到一個(gè)定點(diǎn)和一條定直線的距離相等的點(diǎn)的軌跡是一條拋物線;
③雙曲線,則直線與雙曲線有且只有一個(gè)公共點(diǎn);
④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直;
⑤過的直線與橢圓交于、兩點(diǎn),線段中點(diǎn)為,設(shè)直線斜率為,直線的斜率為,則等于.
其中,正確命題的序號為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究某學(xué)科成績是否與學(xué)生性別有關(guān),采用分層抽樣的方法,從高三年級抽取了30名男生和20名女生的該學(xué)科成績,得到如下所示男生成績的頻率分布直方圖和女生成績的莖葉圖,規(guī)定80分以上為優(yōu)分(含80分).
(Ⅰ)(i)請根據(jù)圖示,將2×2列聯(lián)表補(bǔ)充完整;
優(yōu)分 | 非優(yōu)分 | 總計(jì) | |
男生 | |||
女生 | |||
總計(jì) | 50 |
(ii)據(jù)此列聯(lián)表判斷,能否在犯錯(cuò)誤概率不超過10%的前提下認(rèn)為“該學(xué)科成績與性別有關(guān)”?
(Ⅱ)將頻率視作概率,從高三年級該學(xué)科成績中任意抽取3名學(xué)生的成績,求至少2名學(xué)生的成績?yōu)閮?yōu)分的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】科技創(chuàng)新能力是決定綜合國力和國際競爭力的關(guān)鍵因素,也是推動(dòng)經(jīng)濟(jì)實(shí)現(xiàn)高質(zhì)量發(fā)展的重要支撐,而研發(fā)投入是科技創(chuàng)新的基本保障,下圖是某公司從2010年到2019年這10年研發(fā)投入的數(shù)據(jù)分布圖:
其中折線圖是該公司研發(fā)投入占當(dāng)年總營收的百分比,條形圖是當(dāng)年研發(fā)投入的數(shù)值(單位:十億元).
(I)從2010年至2019年中隨機(jī)選取一年,求該年研發(fā)投入占當(dāng)年總營收的百分比超過10%的概率;
(II)從2010年至2019年中隨機(jī)選取兩個(gè)年份,設(shè)X表示其中研發(fā)投入超過500億元的年份的個(gè)數(shù),求X的分布列和數(shù)學(xué)期望;
(III)根據(jù)圖中的信息,結(jié)合統(tǒng)計(jì)學(xué)知識,判斷該公司在發(fā)展的過程中是否比較重視研發(fā),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近五年來某草場羊只數(shù)量與草場植被指數(shù)兩變量間的關(guān)系如表所示,繪制相應(yīng)的散點(diǎn)圖,如圖所示:
年份 | 1 | 2 | 3 | 4 | 5 |
羊只數(shù)量(萬只) | 1.4 | 0.9 | 0.75 | 0.6 | 0.3 |
草地植被指數(shù) | 1.1 | 4.3 | 15.6 | 31.3 | 49.7 |
根據(jù)表及圖得到以下判斷:①羊只數(shù)量與草場植被指數(shù)成減函數(shù)關(guān)系;②若利用這五組數(shù)據(jù)得到的兩變量間的相關(guān)系數(shù)為,去掉第一年數(shù)據(jù)后得到的相關(guān)系數(shù)為,則;③可以利用回歸直線方程,準(zhǔn)確地得到當(dāng)羊只數(shù)量為2萬只時(shí)的草場植被指數(shù);以上判斷中正確的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a∈R且a≠0).
(1)當(dāng)a時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性與單調(diào)區(qū)間;
(3)若y=f(x)有兩個(gè)極值點(diǎn)x1,x2,證明:f(x1)+f(x2)<9﹣lna.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年春節(jié)期間,新型冠狀病毒(2019﹣nCoV)疫情牽動(dòng)每一個(gè)中國人的心,危難時(shí)刻全國人民眾志成城.共克時(shí)艱,為疫區(qū)助力.我國S省Q市共100家商家及個(gè)人為緩解湖北省抗疫消毒物資壓力,募捐價(jià)值百萬的物資對口輸送湖北省H市.
(1)現(xiàn)對100家商家抽取5家,其中2家來自A地,3家來自B地,從選中的這5家中,選出3家進(jìn)行調(diào)研.求選出3家中1家來自A地,2家來自B地的概率.
(2)該市一商家考慮增加先進(jìn)生產(chǎn)技術(shù)投入,該商家欲預(yù)測先進(jìn)生產(chǎn)技術(shù)投入為49千元的月產(chǎn)增量.現(xiàn)用以往的先進(jìn)技術(shù)投入xi(千元)與月產(chǎn)增量yi(千件)(i=1,2,3,…,8)的數(shù)據(jù)繪制散點(diǎn)圖,由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線的附近,且:,,,,,其中,,,根據(jù)所給的統(tǒng)計(jì)量,求y關(guān)于x回歸方程,并預(yù)測先進(jìn)生產(chǎn)技術(shù)投入為49千元時(shí)的月產(chǎn)增量.
附:對于一組數(shù)據(jù)(u1,v1)(u2,v2),其回歸直線v=α+βu的斜率和截距的最小二乘法估計(jì)分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計(jì)圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計(jì)圖,下列對統(tǒng)計(jì)圖理解錯(cuò)誤的是( )
A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件
B. 2018年1~4月的業(yè)務(wù)量同比增長率均超過50%,在3月底最高
C. 從兩圖來看,2018年1~4月中的同一個(gè)月的快遞業(yè)務(wù)量與收入的同比增長率并不完全一致
D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長率逐月增長
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com