12.若數(shù)列{an}滿足an+1=$\left\{\begin{array}{l}{2{a}_{n},0≤{a}_{n}<\frac{1}{2}}\\{2{a}_{n}-1,\frac{1}{2}≤{a}_{n}<1}\end{array}\right.$,n∈N*),若a1=$\frac{6}{7}$,則a24的值為$\frac{3}{7}$.

分析 利用已知結(jié)合數(shù)列遞推式可得an+3=an.則答案可求.

解答 解:∵$\frac{1}{2}$<$\frac{6}{7}$<1,
∴a2=2a1-1=$\frac{5}{7}$,
${a}_{3}=2{a}_{2}-1=2×\frac{5}{7}-1=\frac{3}{7}$,
${a}_{4}=2{a}_{3}=2×\frac{3}{7}=\frac{6}{7}$,

∴an+3=an
∴${a}_{24}={a}_{3}=\frac{3}{7}$.
故答案為:$\frac{3}{7}$.

點評 本題考查數(shù)列遞推式,關(guān)鍵在于數(shù)列周期的發(fā)現(xiàn),是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

2.一個三角形的三條邊長分別為7,5,3,它的外接圓半徑是$\frac{7\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.求解下列各式的值:
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$+(-2017)0+(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$;
(2)$\sqrt{l{g}^{2}\frac{1}{3}-4lg3+4}$+lg6-lg0.02.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知二次函數(shù)f(x)=ax2+x(a∈R,a≠0).
(1)當a>0時,用作差法證明:f($\frac{x_1+x_2}{2}$)<$\frac{1}{2}$[f(x1)+f(x2)];
(2)已知當x∈[0,1]時,|f(x)|≤1恒成立,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB⊥BC,DE垂直平分線段PC,且分別交AC、PC于D、E兩點,PB=BC,PA=AB=1.
(1)求證:PC⊥平面BDE;
(2)求直線BE與平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.要得到y(tǒng)=-cos2x的圖象,可以將y=sin2x的圖象向左平移$\frac{3π}{4}$個單位長度即可.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.與40°角終邊相同的角是( 。
A.k•360°-40°,k∈ZB.k•180°-40°,k∈ZC.k•360°+40°,k∈ZD.k•180°+40°,k∈Z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.“a=2”是“函數(shù)f(x)=x2-3ax-2在區(qū)間(-∞,-2]內(nèi)單調(diào)遞減”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,斜三棱柱ABC-A1B1C1中,AB=AC=2,平面ABC⊥平面B1BCC1,BC=BB1=2$\sqrt{3}$,∠B1BC=60°,D為B1C1的中點.
(1)求證:AC1∥平面A1BD;
(2)求二面角B1-A1B-D的平面角的余弦值.

查看答案和解析>>

同步練習冊答案