“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對(duì)“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
男性 女性 合計(jì)
反感 10
不反感 8
合計(jì) 30
已知在這30人中隨機(jī)抽取1人抽到反感“中國式過馬路”的路人的概率是
8
15

(Ⅰ)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(在答題卷上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料判斷是否有95%的把握認(rèn)為反感“中國式過馬路”與性別有關(guān)?
(Ⅱ)若從這30人中的女性路人中隨機(jī)抽取2人參加一活動(dòng),記反感“中國式過馬路”的人數(shù)為X,求X的分布列.
附:,其中

P(K2≥k0
0.15 0.10 0.05 0.025 0.010
k0 2.072 2.706 3.841 5.024 6.635
分析:(I)根據(jù)在全部300人中隨機(jī)抽取1人抽到中國式過馬路的概率,做出中國式過馬路的人數(shù),進(jìn)而做出男生的人數(shù),填好表格.再根據(jù)所給的公式,代入數(shù)據(jù)求出臨界值,把求得的結(jié)果同臨界值表進(jìn)行比較,看出有多大的把握說明反感“中國式過馬路”與性別是否有關(guān).
(II)反感“中國式過馬路”的人數(shù)為X的可能取值為0,1,2,通過列舉得到事件數(shù),分別計(jì)算出它們的概率,最后利用列出分布列即可.
解答:解:(Ⅰ)
男性 女性 合計(jì)
反感 10 6 16
不反感 6 8 14
合計(jì) 16 14 30
…(3分)
設(shè)H0:反感“中國式過馬路”與性別與否無關(guān)
由已知數(shù)據(jù)得:Χ2=
30(10×8-6×6)2
16×14×16×14
≈1.158<3.841,
所以,沒有95%的理由認(rèn)為反感“中國式過馬路”與性別有關(guān).…(6分)
(Ⅱ)X的可能取值為0,1,2.P(X=0)=
C
2
8
C
2
14
=
4
13
,P(X=1)=
C
1
8
C
1
6
C
2
14
=
48
91
,P(X=2)=
C
2
6
C
2
14
=
15
91
,…(9分)
所以X的分布列為:
X 0 1 2
P
4
13
48
91
15
91
…(13分)
點(diǎn)評(píng):本題是一個(gè)統(tǒng)計(jì)綜合題,包含獨(dú)立性檢驗(yàn)、離散型隨機(jī)變量的分布列,本題通過創(chuàng)設(shè)情境激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的情感,幫助培養(yǎng)其嚴(yán)謹(jǐn)治學(xué)的態(tài)度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對(duì)“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
男性 女性 合計(jì)
反感 10
6
6
16
16
不反感
6
6
8
14
14
合計(jì)
16
16
14
14
30
已知在這30人中隨機(jī)抽取1人抽到反感“中國式過馬路”的路人的概率是
8
15

(Ⅰ)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路”與性別是否有關(guān)?
(Ⅱ)若從這30人中的女性路人中隨機(jī)抽取2人參加一活動(dòng),記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
提示:可參考試卷第一頁的公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對(duì)“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
男性 女性 合計(jì)
反感 10
不反感 8
合計(jì) 30
已知在這30人中隨機(jī)抽取1人抽到反感“中國式過馬路”的路人的概率是
8
15

(Ⅰ)請(qǐng)將上面的列表補(bǔ)充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路”與性別是否有關(guān)?(x2=
(a+b+c+d)(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,當(dāng)Χ2<2.706時(shí),沒有充分的證據(jù)判定變量性別有關(guān),當(dāng)Χ2>2.706時(shí),有90%的把握判定變量性別有關(guān),當(dāng)Χ2>3.841時(shí),有95%的把握判定變量性別有關(guān),當(dāng)Χ2>6.635時(shí),有99%的把握判定變量性別有關(guān))
(Ⅱ)若從這30人中的女性路人中隨機(jī)抽取2人參加一活動(dòng),記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆甘肅省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對(duì)“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:

 

男性

女性

合計(jì)

反感

10

 

 

不反感

 

8

 

合計(jì)

 

 

30

已知在這30人中隨機(jī)抽取1人抽到反感“中國式過馬路”的路人的概率是

(Ⅰ)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路 ”與性別是否有關(guān)?

(Ⅱ)若從這30人中的女性路人中隨機(jī)抽取2人參加一活動(dòng),記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

P(K2>k)

0.05

0.025

0.010

0.005

k

3.841

5.024

6.635

7.879

下面的臨界值表供參考:

(參考公式:K2=,其中n="a+b+c+d)"

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆安徽省高二下學(xué)期期末質(zhì)檢理科數(shù)學(xué)試卷(解析版) 題型:解答題

“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對(duì)“中國式過馬路 ”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:

 

男性

女性

合計(jì)

反感

10

 

不反感

8

 

合計(jì)

 

 

30

已知在這30人中隨機(jī)抽取1人抽到反感“中國式過馬路 ”的路人的概率是.

(Ⅰ)請(qǐng)將上面的2×2列聯(lián)表補(bǔ)充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路 ”與性別是否有關(guān)?

(Ⅱ)若從這30人中的女性路人中隨機(jī)抽取2人參加一活動(dòng),記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù)和公式:

2×2列聯(lián)表公式:的臨界值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

查看答案和解析>>

同步練習(xí)冊(cè)答案