已知函數(shù)f(x)=
1
3
x3+ax2-bx+1,(a,b∈R)
在區(qū)間[-1,3]上是減函數(shù),則b的最小值是(  )
分析:求出f′(x),因?yàn)楹瘮?shù)在區(qū)間[-1,3]上是減函數(shù)得到f(-1)和f(3)都≤0,分別列出關(guān)于a與b的兩個(gè)不等式,聯(lián)立即可得到u=2a+b≥1,v=b-6a≥9,而b=
3
4
(2a+b)+
1
4
(-6a+b),由不等式的性質(zhì)可得范圍.
解答:解:求導(dǎo)數(shù)可得f′(x)=x2+2ax-b,
函數(shù)f(x)在區(qū)間[-1,3]上是減函數(shù)即在區(qū)間[-1,3]上,f′(x)≤0,
得到f′(-1)≤0,且f′(3)≤0,代入得1-2a-b≤0①,且9+6a-b≤0②,
由①得2a+b≥1③,由②得b-6a≥9④,
設(shè)u=2a+b≥1,v=b-6a≥9,
設(shè)b=mu+nv=m(2a+b)+n(-6a+b)
=(2m-6n)a+(m+n)b,
對照系數(shù)得:2m-6n=0,m+n=1,解得:m=
3
4
,n=
1
4

故b=
3
4
(2a+b)+
1
4
(-6a+b)≥
3
4
×1
+
1
4
×9
=3
故選C
點(diǎn)評:本題考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,靈活運(yùn)用不等式的范圍求未知數(shù)的最值,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)、已知函數(shù)f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數(shù)f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個(gè)函數(shù)g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1-
a
x
)ex
,若同時(shí)滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個(gè)極大值點(diǎn);
②?x∈(8,+∞),f(x)>0.
則實(shí)數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)如果a>0,函數(shù)在區(qū)間(a,a+
1
2
)
上存在極值,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x≥1時(shí),不等式f(x)≥
k
x+1
恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù)f(x)如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
1-m•2x1+m•2x

(1)m=1時(shí),求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案