如圖,從氣球A測(cè)得正前方的濟(jì)南全運(yùn)會(huì)東荷、西柳兩個(gè)場(chǎng)館B、C的俯角分別為α、β,此時(shí)氣球的高度為h,則兩個(gè)場(chǎng)館B、C間的距離為( 。
A、
hsinαsinβ
sin(α-β)
B、
hsin(β-α)
sinαsinβ
C、
hsinα
sinβsin(α-β)
D、
hsinβ
sinαsin(α-β)
考點(diǎn):解三角形的實(shí)際應(yīng)用
專題:計(jì)算題,解三角形
分析:過(guò)A作垂線AD交CB于D,由題意可得∠ABD=α,AB=
h
sinα
,∠ACB=π-β,∠BAC=β-α,在△ABC中利用正弦定理,可求BC
解答: 解:過(guò)A作垂線AD交CB于D,則在Rt△ADB中,∠ABD=α,AB=
h
sinα
.                       
又在△ACB中,∠ACB=π-β,∠BAC=β-α,
由正弦定理,得BC=
hsin(β-α)
sinsinβ

即兩個(gè)場(chǎng)館B、C間的距離為
hsin(β-α)
sinsinβ

故選:B.
點(diǎn)評(píng):本題主要考查了正弦定理在解決實(shí)際問(wèn)題中的應(yīng)用,解決本題的關(guān)鍵是要把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,還要知道俯角的概念.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若某簡(jiǎn)單空間幾何體的三視圖都是邊長(zhǎng)為1的正方形,則這個(gè)空間幾何體的內(nèi)切球的體積為( 。
A、
4
3
π
B、
2
3
π
C、
1
3
π
D、
1
6
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在圓C中,若
AB
AC
=1,則弦AB的長(zhǎng)度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A,B,C是平面內(nèi)不共線的三點(diǎn),點(diǎn)P在該平面內(nèi)且有
PA
+2
PB
=
0
,現(xiàn)將一粒黃豆隨機(jī)撒在△ABC內(nèi),則這粒黃豆落在△PBC內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算
ab
cd
=ad+bc
(1)若
3
sin
x
4
1
cos2
x
4
cos
x
4
=0,求cos(
2
3
π-x)的值;
(2)記f(x)=
3
sin
x
4
cos2
x
4
1cos
x
4
,在△ABC中,有A,B,C滿足條件:sinAcosB-cosBsinC=cosCsinB-cosBsinA,求函數(shù)f(A)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}滿足:a1=1,an+1=2an(n∈N*),則a5=( 。
A、8B、16C、32D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sinxcosx+cos2x-
1
2

(Ⅰ)求函數(shù)f(x)的最小正周期T;
(Ⅱ)把f(x)的圖象向左平移
π
12
個(gè)單位,得到的圖象對(duì)應(yīng)的函數(shù)為g(x),求函數(shù)g(x)在[0,
π
4
]的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x2-
1
2
lnx+1在其定義域內(nèi)的一個(gè)子區(qū)間(a-1,a+1)內(nèi)存在極值,則實(shí)數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列1
1
2
,3
1
4
,5
1
8
,7
1
16
,…則其前n項(xiàng)和Sn為( 。
A、n2+1-
1
2n
B、n2+2-
1
2n
C、n2+1-
1
2n-1
D、n2+2-
1
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案