20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與y=$\sqrt{3}$x-1平行,且它的一個焦點在拋物線y2=8$\sqrt{2}$x的準線上,則雙曲線的方程為$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=1.

分析 求出拋物線的準線方程,得到c的值,結(jié)合雙曲線漸近線與直線的平行關系求出a,b的大小即可.

解答 解:拋物線y2=8$\sqrt{2}$x的準線方程為x=2$\sqrt{2}$,
∵雙曲線的一個焦點在拋物線y2=8$\sqrt{2}$x的準線上,
∴c=2$\sqrt{2}$,
雙曲線的漸近線方程為y=±$\frac{a}$x,
∵雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與y=$\sqrt{3}$x-1平行,
∴$\frac{a}$=$\sqrt{3}$,平方得b2=3a2=c2-a2,
即c2=4a2=8,
則a2=2,b2=6,
即雙曲線的標準方程為$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=1,
故答案為:$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=1,

點評 本題主要考查雙曲線標準方程的求解,根據(jù)條件求出a,b,c是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.已知x=2+i,設M=1-${C}_{4}^{1}$x+${C}_{4}^{2}$x2-${C}_{4}^{3}$x3+${C}_{4}^{4}$x4,則M的值為-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.秦九韶是我國南宋時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為4,3,則輸出v的值為(  )
A.20B.61C.183D.548

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.將函數(shù)y=1+sin(2x+$\frac{π}{4}$)的圖象向下平移1個單位,再向右平移$\frac{π}{8}$個單位,所得到的函數(shù)解析式是( 。
A.y=sin(2x+$\frac{π}{8}$)B.y=sin(2x+$\frac{3π}{8}$)C.y=cos2xD.y=sin2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=ex,g(x)=mx+n.
(1)設h(x)=f(x)-g(x).若函數(shù)h(x)在x=0處的切線過點(1,0),求m+n的值;
(2)設函數(shù)r(x)=$\frac{1}{f(x)}$+$\frac{nx}{g(x)}$,且n=4m(m>0),當x≥0時,比較r(x)與1的大小關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.兩直線ρsin(θ+$\frac{π}{4}$)=2011,ρsin(θ-$\frac{π}{4}$)=2012的位置關系是(  )
A.平行B.垂直C.相交D.重合

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在三棱錐P-ABC中,F(xiàn),M分別是棱PB,AC的中點,E為PC上一動點.
(1)若AF∥平面MEB,試確定點E的位置,并證明你的結(jié)論.
(2)在滿足(1)的條件下,求三棱錐C-MEB與三棱錐C-PAB的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知奇函數(shù)f(x)的定義域為R,且當x>0時,f(x)=x2-3x+2,若函數(shù)y=f(x)-a有3個零點,則實數(shù)a的值是±$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知復數(shù)z(1+i)=2i(i是虛數(shù)單位),則復數(shù)z的虛部是( 。
A.iB.-iC.1D.-1

查看答案和解析>>

同步練習冊答案