(14分)已知.
(1)求的單調(diào)區(qū)間和極值;
(2)是否存在,使得的切線相同?若存在,求出處的切線;若不存在,請說明理由;
(3)若不等式恒成立,求的取值范圍.
(1),上單調(diào)遞減,在上單調(diào)遞增.極小值為,極大值為(2)見解析(3)
(1)求導得,













遞減
極小值
遞增
極大值
遞減
由表可知,上單調(diào)遞減,在上單調(diào)遞增.極小值為,極大值為        4分
(2)存在.
求導得:.
的切線相同,則,即,作出的圖象觀察得.
,由此可得它們在的切線為的切線       9分
(3)由得:.
,則.
因為,所以,所以上單調(diào)遞減,
所以,從而      14分
【考點定位】本題考查函數(shù)與導數(shù)知識,考查導數(shù)與不等式的綜合運用,意在考查學生的分析問題解決問題的能力及觀察能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),為常數(shù).
(1)若函數(shù)處的切線與軸平行,求的值;
(2)當時,試比較的大;
(3)若函數(shù)有兩個零點、,試證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分)
已知函數(shù),且在點處的切線方程為
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)設函數(shù)若方程恰四個不同的解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax2-(a+2)x+lnx.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當a>0時,若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)在點處的切線的斜率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù).
(1)若曲線在點處與直線相切,求a,b的值;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)有兩個極值點,若,則關于的方程的不同實根個數(shù)為
A.3B.4
C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

偶函數(shù)滿足,且在時,,則關于的方程上的根的個數(shù)是 (    )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)處的切線方程___________

查看答案和解析>>

同步練習冊答案